Vertex-EdoéGraohs
 SPSU

Vertex-Edge Graphs

In the
Georgia Performance Standards

Sarah Holliday
Southern Polytechnic State University

- MM3A7. Students will understand and apply matrix representations of vertexedge graphs.
- a. Use graphs to represent realistic situations.
- b. Use matrices to represent graphs, and solve problems that can be represented by graphs.

Vertex-Edoe Grabhs 1 SPSU

- Definitions
- Models
- Examples
- Matrices
- Families
- Euler circuits
- Matchings
- Hamilton cycles POLITECHNIC state university

Definition M C SDSU

- Set-theoretically, a graph G is a set of vertices $V(G)$, and a set of unordered pairs of elements of $V(G)$, called $E(G)$, the edges.
- Other definitions for a graph include language (a story problem), visual representations (of dots and lines), integers (operations modulo n), and matrices.

Example

SRSU

- $\mathrm{V}(\mathrm{G})=\{$ Alan, Bob,

Chad, Dave, Ed,
Fred, George\}

- $\mathrm{E}(\mathrm{G})=\{($ Alan,

Chad),(Dave,
George), (Ed,

Alan), (Bob, Fred),
(Bob, Chad),
(Chad, Dave),
SOUTHERN
POLYTECHNIC
(George, Ed)\}

Subtleties of the definitions SPSU

- Single edges vs. multiple edges

Subtleties of the definitions

SRSU

- Single edges vs. multiple edges
- Simple edges vs hyperedges

Subtleties of the defiaitions

- Single edges vs. multiple edges
- Simple edges vs hyperedges
- Simple loopless graphs vs loops

Whv Sets or Matrices?
 SRSU

- A visual
representation of a graph can be
ambiguous; unless drawn carefully
vertices can appear or disappear unintentionally.

Whv-Visual?

- We can quickly observe symmetry. A visual representation also disguises isomorphisms between graphs.

Retersen Grabh representations SPSU

SOUTHERN POLYTECHNIC
STATE UNIVERSITY

- Recall the graph of Alan, Bob, Chad and their friends.
- The graph is crowded in places and hard to read so we use a matrix to describe it.

- The graph is defined by the relationships between the vertices.
- Each pair of vertices either does or does not have edge betweespultechn them.

Definition

- Adjacency matrix - the number in cell
(i, j) is the number of edges between vertex i and vertex j.

	A	B	C	D	E	F	G
A	0	0	1	0	1	0	0
B	0	0	1	0	0	1	0
C	1	1	0	1	0	0	0
D	0	0	1	0	0	0	1
E	1	0	0	0	0	0	1
F	0	1	0	0	0	0	0
G	0	0	0	1	1	0	0

Matrix representations

SRSU

	A	B	C	D	E	F	G
A	0	0	1	0	1	0	0
B	0	0	1	0	0	1	0
C	1	1	0	1	0	0	0
D	0	0	1	0	0	0	1
E	1	0	0	0	0	0	1
F	0	1	0	0	0	0	0
G	0	0	0	1	1	0	0

Definition

SRSU

- Degree of a vertex is the "number of edges sticking out"
- Degree is the number of edges incident to a vertex
- Degree is the number of neighbors of a vertex

Definition

	A	B	C	D	E	F	G	Degree of a
A	0	0	1	0	1	0	0	vertex is the row
B	0	0	1	0	0	1	0	Sum (column
C	1	1	0	1	0	0	0	Sum)
D	0	0	1	0	0	0	1	
E	1	0	0	0	0	0	1	
F	0	1	0	0	0	0	0	
G	0	0	0	1	1	0	0	

Complete Graphs

SOUTHERN POLYTECHNIC
STATE UNIVERSITY

Complete Graphs

0	1	1	1
1	0	1	1
1	1	0	1
1	1	1	0

Comolete Bipartite graphs

Complete Bipartite graphs

0	0	1	1	1
0	0	1	1	1
1	1	0	0	0
1	1	0	0	0
1	1	0	0	0

0	0	1	1	1	1	1
0	0	1	1	1	1	1
1	1	0	0	0	0	0
1	1	0	0	0	0	0
1	1	0	0	0	0	0
1	1	0	0	0	0	0
1	1	0	0	0	0	0

Seven Bridges of Königsbegisu

- The city of Königsberg in Prussia was set on both sides of the Pregel River, and included two large islands which were connected to each other and the mainland by seven
bridges.
POUTECHNNC

Seven Bridges of Känigsbeģisu

- The problem was to find a walk through the city that would cross each bridge once and only once. The islands could not be reached by any route other than the bridges, and every bridge must have been crossed completely every time (one could not walk half way onto the bridge and then turn around and later cross the other holofrobl the other side).

The Seven Bridges of KönigsbejĭSU

- We represent the land masses as vertices of the graph and bridges as edges of the graph.

Euler circuit

- An Euler circuit in a graph is a sequence of vertices and incident edges that begin and end at the same vertex, and visits each edge EXACTGUTHERN once.

The Seven Bridges of Königsbejig Su

- The problem was to find an Euler circuit in the graph.

Euler circuits

SPSU

- In 1735, Euler showed that there was no solution to the seven bridges problem.

Euler Circuits

SRSU

- Euler showed that for a graph to have an Euler circuit, all of the vertices have to have even degree (an even number of edges sticking out of each
 also has to béte unversit

Euler circuits

SPSU

0	2	1	0
2	0	1	2
1	1	0	1
0	2	1	0

SOUTHERN POLITECHNIC
STATE UNIVERSITY

Matchings in graphs

- Alan, Bob and the gang are taking an online interviewing class together, and because of geography, only certain members can meet each other.

Matchings in graphs

- Each interview will use a distinct pair of people from the class, and ideally, we'd like to schedule as many interviews as possible.
- Each interview will use a distinct pair of people from the class, and ideally, we'd like to schedule as many interviews as possible.
- Each interview will use a distinct pair of people from the class, and ideally, we'd like to schedule as many interviews as possible.
- Each interview will use a distinct pair of people from the class, and ideally, we'd like to schedule as many interviews as possible.

Matchings in graphs

SRSU

A b C D E F G • Because each

A	0	0	1	0	1	0	0
B	0	0	1	0	0	1	0

C $00 \begin{array}{lllllll} & 0 & 0 & 1 & 0 & 0 & 0\end{array}$
D $00 \begin{array}{lllllll}1\end{array}$
E $\quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1$
F $\quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$
 relationship is represented twice in the matrix, we'll create an upper triangular matrix (eliminate the duplicates).

Matchings in graphs

A B \quad C \quad D \quad E \quad F \quad G \quad Each matching will

A	0	0	0	0	1	0	0	have at most one 1
B	0	0	0	0	0	1	0	in any row or
C	0	0	0	0	0	0	0	column
D	0	0	0	0	0	0	0	
E	0	0	0	0	0	0	1	
F	0	0	0	0	0	0	0	
G	0	0	0	0	0	0	0	

Pertect matching

- If every vertex is used in a matching, it is called perfect

Perrect matching

SRSU

0	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Perfect matching

- Pair jobs and employees, given some set of restrictions.

Hamilon's puzzle

- In 1859, Hamilton posed the problem of a traveler who wished to visit each of the twenty cities listed using only the indicated edges as travel routes.

raveling salesman problem

- In 1930, the problem of the traveling salesman is posed: he wishes to start at his home, visit all the points in his area and return home as quickly as possible.

- The TSP and Hamilton's puzzle are both asking us to find a Hamilton cycle in a graph. (The TSP will often vary the "lengths" of the edges as a challenge.) $\begin{gathered}\text { SOUTHERN } \\ \text { POUTEHRNNC } \\ \text { STAE UNUESSTIN }\end{gathered}$
- A Hamilton cycle in a graph is a sequence of vertices and incident edges that visit each vertex EXACTLY once.

Hamiltoncycle

- Determining whether or not a given graph has a Hamilton cycle is an NPcomplete problem.
- We can determine some conditions for the presence of a Hamilton cycle.

Hamilton cycle

 SPSU

SOUTHERN POLYTECHNIC

STATE UNIVERSITY

Hamilton cycle

Complete Graphs

SOUTHERN POLYTECHNIC
STATE UNIVERSITY

Comolete Bipartite graphs

Retersen Grabh representations SPSU

SOUTHERN POLYTECHNIC
STATE UNIVERSITY

Example

SRSU

- $\mathrm{V}(\mathrm{G})=\{$ Alan, Bob,

Chad, Dave, Ed,
Fred, George\}

- $\mathrm{E}(\mathrm{G})=\{($ Alan,

Chad),(Dave,
George), (Ed,

Alan), (Bob, Fred),
(Bob, Chad),
(Chad, Dave),
SOUTHERN POLYTECHNIC
(George, Ed)\}

