ALEKS[®]

Class Name : MATH 1112 Spring 2020 - MWF - 11:15am - Ritter -Sec 52

Instructor Name : Ritter

Instructor Note :

Question 1 of 35

Find an equation for the line below.

Student Name : _____

Question 2 of 35

Use the information given below to find $tan(\alpha + \beta)$.

$$\cos \alpha = \frac{4}{5}$$
, with α in quadrant IV $\sin \beta = -\frac{4}{5}$, with β in quadrant III

Give the exact answer, not a decimal approximation.

Question 3 of 35

Prove the identity.

$$\frac{\cos\left(\frac{3\pi}{2} - x\right)}{\cos\left(\pi + x\right)} = \tan x$$

Question 4 of 35

Prove the identity.

$$\sin(x+y) - \sin(x-y) = 2\cos x \sin y$$

Question 5 of 35

Three graphs are given below. For each, choose its equation from the following.

$$y = \csc x \qquad y = 2 \csc x \qquad y = \sec \left(x + \frac{\pi}{4}\right)$$
$$y = \cot \left(x + \frac{\pi}{4}\right) \qquad y = \tan \frac{x}{2} \qquad y = \tan x$$

Question 6 of 35

Find the exact value of $\tan^{-1}(-1)$.

Write your answer in radians in terms of π .

Question 7 of 35

Rewrite $\sin(\tan^{-1}u)$ as an algebraic expression in u.

Question 8 of 35

Graph the function $y = 3\sin\left(\frac{3}{4}x\right) + 1$.

Question 9 of 35

Find the exact value of $\tan^{-1}(-\sqrt{3})$.

Write your answer in radians in terms of π .

Question 10 of 35

Find the exact value of $\sin 15^\circ$ by using a sum or difference formula.

Question 11 of 35

Write the trigonometric expression as an algebraic expression in u and v. Assume that the variables u and v represent positive real numbers.

$$\sin(\tan^{-1}u - \cos^{-1}v)$$

Question 12 of 35

What are the domains and ranges of the following functions?

Function		
		\circ The set of all real numbers, except integer multiples of π .
		• The set of all real numbers, except odd integer multiples of $\frac{\pi}{2}$.
	Domain	\circ The set of all real numbers from -1 to 1.
		O The set of all real numbers.
		$ {\rm C}$ The set of all real numbers less than or equal to $ -1$ or greater than or equal to $1.$
$y = \sin x$		$\ensuremath{\mathbb{C}}$ The set of all real numbers, except integer multiples of $\ensuremath{\pi}$.
	Range	• The set of all real numbers, except odd integer multiples of $\frac{\pi}{2}$.
		• The set of all real numbers from -1 to 1.
		O The set of all real numbers.
		\circ The set of all real numbers less than or equal to -1 or greater than or equal to 1 .
		\circ The set of all real numbers, except integer multiples of π .
	Domain	• The set of all real numbers, except odd integer multiples of $\frac{\pi}{2}$.
		\bigcirc The set of all real numbers from -1 to 1.
		O The set of all real numbers.
y = c c c r		$ \mathbb{O} $ The set of all real numbers less than or equal to $ -1$ or greater than or equal to 1.
$y = \csc x$		\circ The set of all real numbers, except integer multiples of π .
	Banga	• The set of all real numbers, except odd integer multiples of $\frac{\pi}{2}$.
	riango	\circ The set of all real numbers from -1 to 1.
		O The set of all real numbers.
		$ \mathbb{C} $ The set of all real numbers less than or equal to $ -1$ or greater than or equal to $1.$
		$\ensuremath{\mathbb{C}}$ The set of all real numbers, except integer multiples of $\ensuremath{\pi}$.
	Domain	• The set of all real numbers, except odd integer multiples of $\frac{\pi}{2}$.
		\circ The set of all real numbers from -1 to 1.
		O The set of all real numbers.
$y = \tan x$		$ \mathbb{O} $ The set of all real numbers less than or equal to $ -1$ or greater than or equal to 1.
	Range	$\ensuremath{\mathbb{C}}$ The set of all real numbers, except integer multiples of $\ensuremath{\pi}$.
		• The set of all real numbers, except odd integer multiples of $\frac{\pi}{2}$.
		\bigcirc The set of all real numbers from -1 to 1.
		O The set of all real numbers.
		$ \mathbb{C} $ The set of all real numbers less than or equal to $ -1$ or greater than or equal to $1.$

Question 13 of 35

Write the trigonometric expression as an algebraic expression in u and v.

Assume that the variables *u* and *v* represent positive real numbers.

 $\sin\left(\sin^{-1}u-\tan^{-1}v\right)$

Question 14 of 35

Find the exact value of
$$\sin^{-1}\left(-\frac{\sqrt{2}}{2}\right)$$

Write your answer in radians in terms of π .

Question 15 of 35

Prove the identity.

$$\sec^2 x \left(1 - \sin^2 x\right) = 1$$

Question 16 of 35

Find the amplitude, phase shift, and period of the function.

$$y = -1 - 2\sin\left(3x - \frac{\pi}{4}\right)$$

Give the exact values, not decimal approximations.

Question 17 of 35

Use the information given below to find $\cos{(\alpha - \beta)}$.

$$\cos \alpha = \frac{4}{5}$$
, with α in quadrant I
 $\sin \beta = -\frac{4}{5}$, with β in quadrant III

Give the exact answer, not a decimal approximation.

Question 18 of 35

Prove the identity.

$$\frac{\sin x}{1 - \cos x} = \csc x + \cot x$$

Question 19 of 35

Graph the function
$$y = 3\sin\left(\frac{3}{4}x + \frac{\pi}{2}\right)$$
.

Question 20 of 35

Find an equation for the line below.

Question 21 of 35

Find the exact value of $\tan^{-1}(-1)$.

Write your answer in radians in terms of π .

Question 22 of 35

Prove the identity.

 $\cot x \cos x + \sin x = \csc x$

Question 23 of 35

Find the exact value of $\sin^{-1}\left(\cos\frac{3\pi}{4}\right)$.

Write your answer in radians in terms of π .

Question 24 of 35

Find the exact value of $\csc(\tan^{-1}(-2))$.

Question 25 of 35

Simplify.

tan x	
sec x	

Use algebra and the fundamental trigonometric identities. Your answer should be a number or use a single trigonometric function.

Question 26 of 35

Find an equation for the line below.

Question 27 of 35

Rewrite
$$\tan\left(\sin^{-1}\frac{w}{\sqrt{9+w^2}}\right)$$
 as an algebraic expression in *w*.

Question 28 of 35

Find the exact value of $\sin^{-1}\left(\sin\frac{7\pi}{6}\right)$.

Write your answer in radians in terms of π .

Question 29 of 35

Consider the line $y = -\frac{2}{3}x + 1$.

(a) Find the equation of the line that is parallel to this line and passes through the point (3, -4).

(b) Find the equation of the line that is perpendicular to this line and passes through the point (3, -4).

Note that a graphing calculator may be helpful in checking your answer.

Question 30 of 35

Simplify.

 $\frac{\sec x \cos x}{\tan x}$

Use algebra and the fundamental trigonometric identities. Your answer should be a number or use a single trigonometric function.

Question 31 of 35

Find the period and amplitude of the function.

 $y = -4 \sin 3x$

Give the exact values, not decimal approximations.

Period: Amplitude:

Question 32 of 35

Find the exact value of $\sin^{-1}\left(-\frac{\sqrt{2}}{2}\right)$.

Write your answer in radians in terms of π .

Question 33 of 35

Use a sum or difference formula to find the exact value of the following.

$$\sin\frac{\pi}{6}\cos\frac{\pi}{12} + \cos\frac{\pi}{6}\sin\frac{\pi}{12}$$

Question 34 of 35

Prove the identity.

$$\csc(-x) - \sin(-x) = -\cos x \cot x$$

Question 35 of 35

Find the exact value of $\tan\left(\sin^{-1}\left(\frac{5}{13}\right)\right)$.

Quiz 3 #1 Answers for class MATH 1112 Spring 2020 - MWF - 11:15am - Ritter - Sec 52

Question 1 of 35

$$y = \frac{1}{3}x + \frac{7}{3}$$

Question 2 of 35

 $\tan\left(\alpha+\beta\right)=\frac{7}{24}$

Question 3 of 35

Statement	Rule
$\frac{\cos\left(\frac{3\pi}{2} - x\right)}{\cos\left(\pi + x\right)}$	
$\frac{\frac{3\pi}{2}\cos x + \sin\frac{3\pi}{2}\sin x}{\cos\pi\cos x - \sin\pi\sin x}$	Sum and Difference
$\frac{0 \cdot \cos x + (-1)\sin x}{(-1)\cos x - 0 \cdot \sin x}$	Evaluation
$\frac{-\sin x}{-\cos x}$	Algebra
$\boxed{\frac{\sin x}{\cos x}}$	Algebra
tanx	Quotient

Question 4 of 35

Statement	Rule
$\sin\left(x+y\right) - \sin\left(x-y\right)$	
$(\sin x \cos y + \cos x \sin y) - (\sin x \cos y - \cos x \sin y)$	Sum and Difference
$\sin x \cos y + \cos x \sin y - \sin x \cos y + \cos x \sin y$	Algebra
$2\cos x \sin y$	Algebra

Question 5 of 35

Question 6 of 35

 $\tan^{-1}(-1) = -\frac{\pi}{4}$

Question 7 of 35

$$\sin\left(\tan^{-1}u\right) = \frac{u}{\sqrt{1+u^2}}$$

Question 8 of 35

Question 9 of 35

$$\tan^{-1}\left(-\sqrt{3}\right) = -\frac{\pi}{3}$$

Question 10 of 35

$$\frac{\sqrt{6} - \sqrt{2}}{4}$$

Quiz 3 #1 Page 12 /17

Question 11 of 35

$$\frac{uv - \sqrt{1 - v^2}}{\sqrt{u^2 + 1}}$$

Question 12 of 35

Function			
$y = \sin x$	Domain	The set of all real r	
	Range	The set of all real r -1 1	
$y = \csc x$	Domain	The set of all real r	π
	Range	The set of all real r -1	
$y = \tan x$	Domain	The set of all real r	
	Range	The set of all real r	

Question 13 of 35

$$\frac{u - v\sqrt{1 - u^2}}{\sqrt{v^2 + 1}}$$

Question 14 of 35

 $\sin^{-1}\left(-\frac{\sqrt{2}}{2}\right) = -\frac{\pi}{4}$

Question 15 of 35

Statement	Rule
$\sec^2 x \left(1 - \sin^2 x\right)$	
$\frac{1}{\cos^2 x} \left(1 - \sin^2 x\right)$	Reciprocal
$\frac{1}{\cos^2 x} \cos^2 x$	Pythagorean
1	Algebra

Question 16 of 35

Quiz 3 #1 Page 13 /17

 $\frac{\pi}{2}$

Amplitude: 2

Phase shift: $\frac{\pi}{12}$ Period: $\frac{2\pi}{3}$

Question 17 of 35

 $\cos{(\alpha-\beta)}=-\frac{24}{25}$

Question 18 of 35

Statement	Rule
$\frac{\sin x}{1}$	
$1 - \cos x$	
$\frac{\sin x}{1+\cos x}$	Algebra
$1 - \cos x$ $1 + \cos x$	
$\frac{\sin x \left(1 + \cos x\right)}{1 + \cos^2 x}$	Algebra
$1 - \cos x$	
$\frac{\sin x \left(1 + \cos x\right)}{\sin^2 x}$	Pythagorean
$\frac{1+\cos x}{\sin x}$	Algebra
$\frac{1}{\sin x} + \frac{\cos x}{\sin x}$	Algebra
$\csc x + \frac{\cos x}{\sin x}$	Reciprocal
$\csc x + \cot x$	Quotient

Question 19 of 35

Question 20 of 35

$$y = \frac{1}{5}x - \frac{14}{5}$$
Quiz 3 #1 Page 14 /17

© 2020 McGraw-Hill Education. All Rights Reserved.

Question 21 of 35

$$\tan^{-1}(-1) = -\frac{\pi}{4}$$

Question 22 of 35

Statement	Rule
$\cot x \cos x + \sin x$	
$\frac{\cos x}{\sin x}\cos x + \sin x$	Quotient
$\frac{\cos^2 x}{\sin x} + \sin x$	Algebra
$\frac{\cos^2 x + \sin^2 x}{\sin x}$	Algebra
$\frac{1}{\sin x}$	Pythagorean
cscx	Reciprocal

Question 23 of 35

 $-\frac{\pi}{4}$

Question 24 of 35

 $-\frac{\sqrt{5}}{2}$

Question 25 of 35

 $\sin x$

Question 26 of 35

 $y = -\frac{3}{2}x + \frac{5}{2}$

Question 27 of 35

$$\tan\left(\sin^{-1}\frac{w}{\sqrt{9+w^2}}\right) = \frac{w}{3}$$

Question 28 of 35

 $-\frac{\pi}{6}$

Question 29 of 35

Equation of parallel line:
$$y = -\frac{2}{3}x - 2$$

Equation of perpendicular line: $y = \frac{3}{2}x - \frac{17}{2}$

Question 30 of 35

 $\cot x$

Question 31 of 35

Period: $\frac{2\pi}{3}$

Amplitude: 4

Question 32 of 35

$$\sin^{-1}\left(-\frac{\sqrt{2}}{2}\right) = -\frac{\pi}{4}$$

Question 33 of 35

$$\frac{\sqrt{2}}{2}$$

Question 34 of 35

Statement	Rule
$\csc(-x) - \sin(-x)$	
$-\csc x + \sin x$	Odd//Even
$\frac{-1}{\sin x} + \sin x$	Reciprocal
$\frac{-1 + \sin^2 x}{\sin x}$	Algebra
$\frac{-(1-\sin^2 x)}{\sin x}$	Algebra
$\frac{-\cos^2 x}{\sin x}$	Pythagorean
$-\cos x \cdot \frac{\cos x}{\sin x}$	Algebra
$-\cos x \cot x$	Quotient

Question 35 of 35

 $\frac{5}{12}$