Additional Homework Exercises

Section 5: First Order Equations Models and Applications

(1) An RC-series circuit has resistance R_{0} and capacitance C_{0}. A constant electromotive force of E_{0} volts is applied. If the initial charge on the capacitor $q(0)=0$, find the charge $q(t)$ on the capacitor at time t. Show that the long time charge on the capacitor is the product $E_{0} C_{0}$.
(2) An LR-series circuit has inductance 0.5 h , resistance 10 ohms , and an applied force of $0.1 e^{-t}$ volts. If the initial current $i(0)=1 \mathrm{~A}$, find the current $i(t)$.
(3) A 400 gallon tank contains water into which 10 lbs of salt is dissolved. Salt water containing 3 lbs of salt per gallon is being pumped in at a rate of 4 gallons per minute, and the well mixed solution is being pumped out at the same rate. Let $A(t)$ be the number of lbs of salt in the tank at time t in minutes. Derive the initial value problem governing $A(t)$. Solve this IVP for A.
(4) Suppose the solution in problem (3) is being pumped out at the rate of 5 gallons per minute. Keeping everything else the same as in problem (3), derive the IVP governing A under this new condition. Solve this IVP for A. What is the largest time value for which your solution is physically feasible?
(5) An LR-series circuit has constant inductance and resistance L_{0} and R_{0}, respectively. A constant electromotive force of E_{0} is applied. Find the current $i(t)$ if $i(0)=i_{0}$. Show that for any initial current, the long time current in the circuit is E_{0} / R_{0}.
(6) We know that a quantity P that satisfies $\frac{d P}{d t}=P$ experiences exponential growth. The equation $\frac{d P}{d t}=P^{1+\epsilon}$, for $\epsilon>0$, is refered to as a doomsday equation. Solve the following IVP.

$$
\frac{d P}{d t}=P^{2}, \quad P(0)=P_{0} \quad \text { where, } P_{0}>0
$$

By taking the limit $\lim _{t \rightarrow \frac{1}{P_{0}}}-P(t)$, deduce the appropriateness of the doomsday label.

Solutions

Section 5: First Order Equations Models and Applications

(1) $q(t)=E_{0} C_{0}\left(1-e^{-t / R_{0} C_{0}}\right), \quad q \rightarrow E_{0} C_{0} \quad$ as $\quad t \rightarrow \infty$.
(2) $\quad i(t)=\frac{1}{95} e^{-t}+\frac{94}{95} e^{-20 t}$
(3) $\frac{d A}{d t}+\frac{1}{100} A=12, \quad A(0)=10 . \quad A(t)=1200-1190 e^{-t / 100}$
(4) $\frac{d A}{d t}+\frac{5}{400-t} A=12, \quad A(0)=10 . \quad A(t)=3(400-t)-\frac{1190}{400^{5}}(400-t)^{5}, \quad 0 \leq t \leq 400$
(5) $\quad i(t)=\frac{E_{0}}{R_{0}}+\left(i_{0}-\frac{E_{0}}{R_{0}}\right) e^{-R_{0} t / L_{0}}, \quad \lim _{t \rightarrow \infty} i(t)=\frac{E_{0}}{R_{0}}+\left(i_{0}-\frac{E_{0}}{R_{0}}\right) \cdot 0=\frac{E_{0}}{R_{0}}$
(6) $P(t)=\frac{P_{0}}{1-P_{0} t}, \quad \lim _{t \rightarrow \frac{1}{P_{0}}-} P(t)=\infty$,

Notice that the solution P exibits blow up (i.e. tends to infinity) in finite time.

