April 10 Math 2306 sec. 60 Spring 2018

Section 16: Laplace Transforms of Derivatives and IVPs

Suppose f has a Laplace transform and that f is differentiable on

[0, o). Obtain an expression for the Laplace tranform of f'(t). (Assume
f is of exponential order ¢ for some c.)
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Transforms of Derivatives

If £ {f(t)} = F(s), we have Z {f'(t)} = sF(s) — f(0). We can use this
relationship recursively to obtain Laplace transforms for higher
derivatives of f.

For example

2{f"()} = sL{f(1)}-F(0)
= s(sF(s) - f(0)) — f(0)

= s2F(s) — sf(0) — f'(0)
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Transforms of Derivatives

For y = y(t) defined on [0, c0) having derivatives y’, y” and so forth, if

Z{y(t)} = Y(s),

then 4
7 {d{} — s¥(s) — y(0),

&z { d”y} =5"Y(s) =" y(0) = s"2y/(0) — - - — y""(0).
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Differential Equation
For constants a, b, and c, take the Laplace transform of both sides of
the equation
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Solving IVPs
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Figure: We use the Laplace transform to turn our DE into an algebraic

equation. Solve this transformed equation, and then trans;orm back.
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General Form

We get
Q(s) , G(s)
Y(s) =
9= B " P(s)
where Q is a polynomial with coefficients determined by the initial
conditions, G is the Laplace transform of g(t) and P is the
characteristic polynomial of the original equation.

z1 { ggzg } is called the zero input response,

7 { ggzi } is called the zero state response.
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Solve the IVP using the Laplace Transform

(a) (3;+3y:2t y(0) =2 Yiyd= o

9y 43,8 £12tS

TN RS S

(\\. 3 . A
) "?U)) + AV = 9 "S’z' <+

Pl
(S'*SB L\)(ss -2 = —g-:

(s+DHV = Q _§{

March 28, 2018

9/72



2

G 2, X 2 2
S S+3 <3 ——_S-r 3 + ’_57-(;43)
2
Patet rachon o S(s+3)
Clees Lrau-
i" < _PL + _G— -+ < et \'9-
$(s+3) s st 83 S (s+3)

2 : Ns(seDt BED* Cs"
= A (s 3 + Rls4D+ &

04 0s + 2 “(A+CYs™+ (5p+B) s + 3B

March 28, 2018

10/72






Solve the IVP using the Laplace Transform
y'+4y'+4y = te=?' y(0)=1,y'(0) =0 < €”a} = Ye)
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