April 10 Math 3260 sec. 55 Spring 2018

Section 6.2: Orthogonal Sets

Definition: An orthogonal basis for a subspace W of R” is a basis
that is also an orthogonal set.

Theorem: Let {uy,...,up} be an orthogonal basis for a subspace W
of R". Then each vector y in W can be written as the linear
combination

Y = CiUy + CoUa + - - - + CpUp,  Where the weights

g=39.
Uj'Uj

April 10, 2018 1/59



Projection

Given a nonzero vector u, suppose we wish to decompose another
nonzero vector y into a sum of the form

y=y+z
in such a way that y is parallel to u and z is perpendicular to u.
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Projection onto the subspace L =Span{u}

Notation: y = projy = (H) u

The distance between y and L is the norm ||y — proj,||.
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Orthonormal Sets

Definition: A set {uy,...,up} is called an orthonormal set if it is an
orthogonal set of unit vectors.

Definition: An orthonormal basis of a subspace W of R" is a basis
that is also an orthonormal set.
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Orthogonal Matrix
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Orthogonal Matrix

Definition: A square matrix U is called an orthogonal matrix if
ur=u-.

Theorem: An n x n matrix U is orthogonal if and only if it's columns
form an orthonormal basis of R".

The linear transformation associated to an orthogonal matrix
preserves lenghts and angles in the following sense:
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Theorem: Orthogonal Matrices

Let U be an n x n orthogonal matrix and x and y vectors in R". Then
(@) [Ux]| = [}x]|

(b) (Ux)-(Uy) = x-vy,in particular

(c) (Ux)-(Uy) = Oifandonlyifx-y = 0.
Proof (of (a)):
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Section 6.3: Orthogonal Projections
Equating points with position vectors, we may wish to find the point y in
a subspace W of R" that is closestto a given point y.

y

>

Figure: lllustration of an orthogonal projection. Note that dist(y, ) is the
shortest distance between y and the points on W.
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Orthogonal Decomposition Theorem
Let W be a subspace of R". Each vector y in R” can be written
uniquely as a sum

y=y-+z
where yisin W and zis in W+,

If {uq,...,up} is any orthogonal basis for W, then

p
a y-u ' Yy
y_Z(uj‘u]) u, and z=y-¥.

=

Remark: Note that the basis must be orthogonal, but otherwise the
vector y is independent of the particular basis used!

Remark: The vector y is called the orthogonal projection of y onto
W. We can denote it

projy -
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Example
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Example Continued...
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(b) Find the orthogonal projection of y onto W.
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(c) Find the shortest distance between y and the subspace W.
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Computing Orthogonal Projections

Theorem: If {uy,...,up} is an orthonormal basis of a subspace W of
R", and y is any vector in R" then

p
N projWy:Z(y-uj) u;.
Y =

And, if Uis the matrix U =[uy --- up], then the above is equivalent
to
proj,y y = UUTy.

Remark: In general, U is not square; it's n x p. So even though UUT
will be a square matrix, it is not the same matrix as U U and it is not
the identity matrix.
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Example
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Find an orthonormal basis {\ 1,V ,} for W. Then compute the matrices

UTU and UUT where U = N1 N 2].
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Example
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Use the matrix formulation to find proj, y.
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