April 10 Math 3260 sec. 56 Spring 2018

Section 6.2: Orthogonal Sets

Definition: An orthogonal basis for a subspace W of \mathbb{R}^{n} is a basis that is also an orthogonal set.

Theorem: Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal basis for a subspace W of \mathbb{R}^{n}. Then each vector \mathbf{y} in W can be written as the linear combination

$$
\begin{gathered}
\mathbf{y}=c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{p} \mathbf{u}_{p}, \quad \text { where the weights } \\
c_{j}=\frac{\mathbf{y} \cdot \mathbf{u}_{j}}{\mathbf{u}_{j} \cdot \mathbf{u}_{j}} .
\end{gathered}
$$

Projection

Given a nonzero vector u, suppose we wish to decompose another nonzero vector \mathbf{y} into a sum of the form

$$
\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}
$$

in such a way that $\hat{\mathbf{y}}$ is parallel to \mathbf{u} and \mathbf{z} is perpendicular to \mathbf{u}.

Projection
Since $\hat{\mathbf{y}}$ is parallel to \mathbf{u}, there is a scalar α such that

$$
\begin{aligned}
& \overrightarrow{\mathbf{y}}=\alpha \mathbf{u} . \\
& \vec{y}=\hat{y}+\vec{z}=\alpha \vec{u}+\vec{z} \quad \text { we want } \vec{z} \perp \vec{u} \text { ie. } \vec{z} \cdot \vec{u}=0 \\
& \vec{y}=(\alpha \vec{u}+\vec{z}) \cdot \vec{u} \\
& =\alpha \vec{u} \cdot \vec{u}+\vec{z} \cdot \vec{u} \\
& =\alpha \vec{u} \cdot \vec{u}+0 \quad=\alpha \vec{u} \cdot \vec{u} \\
& \Rightarrow \quad \alpha=\frac{\vec{y} \cdot \vec{u}}{\vec{u} \cdot \vec{u}}
\end{aligned}
$$

Projection onto the subspace $L=\operatorname{Span}\{\mathbf{u}\}$

$$
\text { Notation: } \quad \hat{\mathbf{y}}=\operatorname{proj}_{L} \mathbf{y}=\left(\frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}\right) \mathbf{u}
$$

The distance between \mathbf{y} and L is the norm $\| \mathbf{y}-$ proj$_{L} \|$.

Example:
Let $\mathbf{y}=\left[\begin{array}{l}7 \\ 6\end{array}\right]$ and $\mathbf{u}=\left[\begin{array}{l}4 \\ 2\end{array}\right]$. Write $\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}$ where $\hat{\mathbf{y}}$ is in $\operatorname{Span}\{\mathbf{u}\}$ and \mathbf{z} is orthogonal to \mathbf{u}.

$$
\begin{aligned}
& \hat{y}=\frac{\vec{y} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u} \\
& \vec{y} \cdot \vec{u}=7(4)+6(z)=40 \\
& \vec{u} \cdot \vec{u}=4^{2}+2^{2}=20 \\
& =\frac{40}{20}\left[\begin{array}{l}
4 \\
2
\end{array}\right] \\
& =2\left[\begin{array}{l}
4 \\
2
\end{array}\right]=\left[\begin{array}{l}
8 \\
4
\end{array}\right] \\
& \vec{z}=\vec{y}-\hat{y}=\left[\begin{array}{l}
7 \\
6
\end{array}\right]-\left[\begin{array}{l}
8 \\
4
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2
\end{array}\right] \\
& \begin{array}{r}
\vec{y}= \\
\hat{y} \quad\left[\begin{array}{l}
8 \\
4
\end{array}\right]+\left[\begin{array}{c}
-1 \\
2
\end{array}\right] \\
\vec{z}
\end{array}
\end{aligned}
$$

Example Continued...
Determine the distance between the point $(7,6)$ and the line $\operatorname{Span}\{\mathbf{u}\}$.
The distance is $\|\vec{z}\|=\sqrt{(-1)^{2}+2^{2}}=\sqrt{5}$

Orthonormal Sets

Definition: A set $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is called an orthonormal set if it is an orthogonal set of unit vectors.

Definition: An orthonormal basis of a subspace W of \mathbb{R}^{n} is a basis that is also an orthonormal set.

Example: Show that $\left\{\left[\begin{array}{l}\frac{3}{5} \\ \frac{4}{5}\end{array}\right],\left[\begin{array}{c}-\frac{4}{5} \\ \frac{3}{5}\end{array}\right]\right\}$ is an orthonormal basis for \mathbb{R}^{2}.
2. To show it's a basis consid. dat $\begin{aligned} {\left[\begin{array}{cc}\frac{3}{5} & \frac{-4}{5} \\ \frac{4}{5} & \frac{3}{5}\end{array}\right] } & =\frac{9}{25}+\frac{16}{25}=1 \\ & \neq 0\end{aligned}$
The columns are lin. independent and soon \mathbb{R}^{2} (invertible matrix the).
we have a basis for \mathbb{R}^{2}.

Let $\vec{u}_{1}=\left[\begin{array}{l}3 / 5 \\ 4 / 5\end{array}\right]$ and $\vec{u}_{2}=\left[\begin{array}{c}-\frac{4}{5} \\ \frac{3}{5}\end{array}\right]$

$$
\begin{aligned}
& \vec{u}_{1} \cdot \vec{u}_{1}=\left(\frac{3}{5}\right)^{2}+\left(\frac{4}{5}\right)^{2}=\frac{25}{25}=1 \Rightarrow\left\|\vec{u}_{1}\right\|=\sqrt{1}=1 \\
& \vec{u}_{2} \cdot \vec{u}_{2}=\left(\frac{-4}{5}\right)^{2}+\left(\frac{3}{5}\right)^{2}=\frac{25}{25}=1 \Rightarrow\left\|\vec{u}_{2}\right\|=\sqrt{1}=1 \\
& \vec{u}_{1} \cdot \vec{u}_{2}=\frac{3}{5}\left(-\frac{4}{5}\right)+\frac{4}{5}\left(\frac{3}{5}\right)=-\frac{12}{25}+\frac{12}{25}=0
\end{aligned}
$$

They one or thogond unit vectors. Hence we have an orthonormal basis for \mathbb{R}^{2}.

Orthogonal Matrix
Consider the matrix $U=\left[\begin{array}{cc}\frac{3}{5} & -\frac{4}{5} \\ 4 & \frac{3}{5} \\ 5 & 5\end{array}\right]$ whose columns are the vectors in the last example. Compute the product

$$
\begin{aligned}
U^{T} U=\left[\begin{array}{cc}
\frac{3}{5} & \frac{4}{5} \\
\frac{-4}{5} & \frac{3}{5}
\end{array}\right]\left[\begin{array}{cc}
\frac{3}{5} & \frac{-4}{5} \\
\frac{4}{5} & \frac{3}{5}
\end{array}\right] & =\left[\begin{array}{cc}
\left(\frac{3}{5}\right)^{2}+\left(\frac{4}{5}\right)^{2} & \frac{-12}{25}+\frac{12}{25} \\
\frac{-12}{25}+\frac{12}{25} & \left(\frac{-4}{5}\right)^{2}+\left(\frac{3}{5}\right)^{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

What does this say about U^{-1} ?

$$
U^{-1}=U^{\top}
$$

Orthogonal Matrix

Definition: A square matrix U is called an orthogonal matrix if $U^{T}=U^{-1}$.

Theorem: An $n \times n$ matrix U is orthogonal if and only if it's columns form an orthonormal basis of \mathbb{R}^{n}.

The linear transformation associated to an orthogonal matrix preserves lenghts and angles in the following sense:

Theorem: Orthogonal Matrices

Let U be an $n \times n$ orthogonal matrix and \mathbf{x} and \mathbf{y} vectors in \mathbb{R}^{n}. Then
(a) $\|U \mathbf{x}\|=\|\mathbf{x}\|$
(b) $(U \mathbf{x}) \cdot(U \mathbf{y})=\mathbf{x} \cdot \mathbf{y}$, in particular
(c) $(U \mathbf{x}) \cdot(U \mathbf{y})=0$ if and only if $\mathbf{x} \cdot \mathbf{y}=0$.

Proof (of (a)):
Recall $\|\vec{x}\|^{2}=\vec{x} \cdot \vec{x}, \quad \vec{x} \cdot \vec{x}=\vec{x}^{\top} \vec{x}$

$$
(U \vec{x})^{\top}=\vec{x}^{\top} U^{\top}
$$

$$
\begin{aligned}
\|u \vec{x}\|^{2} & =(U \vec{x})^{\top}(U \vec{x}) \\
& =\vec{x}^{\top} U^{\top}(U \vec{x}) \\
& =\vec{x}^{\top}\left(u^{\top} U\right) \vec{x} \\
& =\vec{x}^{\top} I \vec{x} \\
& =\vec{x}^{\top} \vec{x} \\
& =\|\vec{x}\|^{2}
\end{aligned}
$$

Taking the squan root of both sides, since the norms are nonnegative

$$
\|u \vec{x}\|=\|\vec{x}\|
$$

Section 6.3: Orthogonal Projections

Equating points with position vectors, we may wish to find the point $\hat{\mathbf{y}}$ in a subspace W of \mathbb{R}^{n} that is closest to a given point \mathbf{y}.

Figure: Illustration of an orthogonal projection. Note that $\operatorname{dist}(\mathbf{y}, \hat{\mathbf{y}})$ is the shortest distance between \mathbf{y} and the points on W.

Orthogonal Decomposition Theorem

Let W be a subspace of \mathbb{R}^{n}. Each vector \mathbf{y} in \mathbb{R}^{n} can be written uniquely as a sum

$$
\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}
$$

where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp}.
If $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is any orthogonal basis for W, then

$$
\hat{\mathbf{y}}=\sum_{j=1}^{p}\left(\frac{\mathbf{y} \cdot \mathbf{u}_{j}}{\mathbf{u}_{j} \cdot \mathbf{u}_{j}}\right) \mathbf{u}_{j}, \quad \text { and } \quad \mathbf{z}=\mathbf{y}-\hat{\mathbf{y}} .
$$

Remark: Note that the basis must be orthogonal, but otherwise the vector $\hat{\mathbf{y}}$ is independent of the particular basis used!

Remark: The vector $\hat{\mathbf{y}}$ is called the orthogonal projection of \mathbf{y} onto W. We can denote it

$$
\operatorname{proj}_{W} \mathbf{y} .
$$

Example
Let $\mathbf{y}=\left[\begin{array}{l}4 \\ 8 \\ 1\end{array}\right]$ and

$$
W=\operatorname{Span}\left\{\left[\begin{array}{c}
\vec{V}_{1} \\
2 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
-2 \\
2 \\
1
\end{array}\right]\right\} .
$$

(a) Verify that the spanning vectors for W given are an orthogonal basis for W.

Noting that $\vec{V}_{1} \neq k \vec{v}_{z}$ for any scala k, the y are linear independent.

$$
\vec{V}_{1} \cdot \vec{V}_{2}=2(-2)+1(2)+2(1)=-4+2+2=0
$$

They are orthogonal.

Example Continued...

$$
W=\operatorname{Span}\left\{\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
-2 \\
2 \\
1
\end{array}\right]\right\} \text { and } \mathbf{y}=\left[\begin{array}{l}
4 \\
8 \\
1
\end{array}\right]
$$

(b) Find the orthogonal projection of \mathbf{y} onto W.

$$
\begin{array}{ll}
\hat{y}=\frac{\vec{y} \cdot \vec{v}_{1}}{\overrightarrow{V_{1}} \cdot \vec{v}_{1}} \vec{V}_{1}+\frac{\vec{y} \cdot \vec{V}_{2}}{\vec{v}_{2} \cdot \vec{v}_{2}} \vec{V}_{2} \\
\vec{y} \cdot \vec{V}_{1}=2 \cdot 4+1 \cdot 8+2 \cdot 1=18 & \vec{v}_{1} \cdot \vec{V}_{1}=2^{2}+1^{2}+2^{2}=9 \\
y \cdot \vec{v}_{2}=-2(4)+2(8)+1(1)=9 & \vec{v}_{2} \cdot \vec{V}_{2}=(-2)^{2}+2^{2}+1^{2}=9
\end{array}
$$

$$
\begin{aligned}
\hat{y} & =\frac{18}{9} \vec{v}_{1}+\frac{9}{9} \vec{v}_{2} \\
& =2\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right]+1\left[\begin{array}{c}
-2 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
4 \\
5
\end{array}\right]
\end{aligned}
$$

(c) Find the shortest distance between y and the subspace W.

If $\vec{y}=\hat{y}+\vec{z}$ then the distance is

$$
\begin{gathered}
\|\vec{z}\|=\|\vec{y}-\hat{y}\| \cdot \\
\vec{z}=\vec{y}-\hat{y}=\left[\begin{array}{l}
4 \\
8 \\
1
\end{array}\right]-\left[\begin{array}{l}
2 \\
4 \\
5
\end{array}\right]=\left[\begin{array}{c}
2 \\
4 \\
-4
\end{array}\right] \\
\|\vec{z}\|=\sqrt{2^{2}+4^{2}+(-4)^{2}}=\sqrt{36}=6
\end{gathered}
$$

Computing Orthogonal Projections

Theorem: If $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is an orthonormal basis of a subspace W of \mathbb{R}^{n}, and \mathbf{y} is any vector in \mathbb{R}^{n} then

$$
\hat{y}=\operatorname{proj}_{w} \mathbf{y}=\sum_{j=1}^{p}\left(\mathbf{y} \cdot \mathbf{u}_{j}\right) \mathbf{u}_{j} .
$$

And, if U is the matrix $U=\left[\begin{array}{lll}\mathbf{u}_{1} & \cdots & \mathbf{u}_{p}\end{array}\right]$, then the above is equivalent to

$$
\operatorname{proj}_{W} \mathbf{y}=U U^{T} \mathbf{y} .
$$

Remark: In general, U is not square; it's $n \times p$. So even though $U U^{\top}$ will be a square matrix, it is not the same matrix as $U^{\top} U$ and it is not the identity matrix.

Example

$$
W=\operatorname{Span}\left\{\left[\begin{array}{l}
\vec{v}_{1} \\
2 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
-2 \\
2 \\
1
\end{array}\right]\right\}
$$

Find an orthonormal basis $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ for W. Then compute the matrices $U^{\top} U$ and $U U^{\top}$ where $U=\left[\begin{array}{ll}\mathbf{u}_{1} & \mathbf{u}_{2}\end{array}\right]$.

$$
\begin{aligned}
& \vec{u}_{1}=\frac{1}{n \vec{v}_{1} \|} \vec{v}_{1}=\frac{1}{3}\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
2 / 3 \\
1 / 3 \\
2 / 3
\end{array}\right] \\
& \vec{u}_{2}=\frac{1}{\left\|\vec{v}_{2}\right\|} \vec{v}_{2}=\frac{1}{3}\left[\begin{array}{c}
-2 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
-2 / 3 \\
2 / 3 \\
1 / 3
\end{array}\right] \\
& U=\left[\begin{array}{cc}
2 / 3 & -2 / 3 \\
1 / 3 & 2 / 3 \\
2 / 3 & 1 / 3
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& U^{\top} U=\frac{1}{3}\left[\begin{array}{ccc}
2 & 1 & 2 \\
-2 & 2 & 1
\end{array}\right] \frac{1}{3}\left[\begin{array}{ll}
2 & -2 \\
1 & 2 \\
2 & 1
\end{array}\right]=\frac{1}{9}\left[\begin{array}{ll}
9 & 0 \\
0 & 9
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& U U^{\top}=\frac{1}{3}\left[\begin{array}{cc}
2 & -2 \\
1 & 2 \\
2 & 1
\end{array}\right] \frac{1}{3}\left[\begin{array}{ccc}
2 & 1 & 2 \\
-2 & 2 & 1
\end{array}\right]=\frac{1}{9}\left[\begin{array}{ccc}
8 & -2 & 2 \\
-2 & 5 & 4 \\
2 & 4 & 5
\end{array}\right]
\end{aligned}
$$

Example

$$
W=\operatorname{Span}\left\{\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
-2 \\
2 \\
1
\end{array}\right]\right\} \quad \text { and } \quad \mathbf{y}=\left[\begin{array}{l}
4 \\
8 \\
1
\end{array}\right]
$$

Use the matrix formulation to find $\operatorname{proj}_{w} \mathbf{y}$.

$$
\hat{y}=U U^{\top} \vec{y}=\frac{1}{9}\left[\begin{array}{ccc}
8 & -2 & 2 \\
-2 & 5 & 4 \\
2 & 4 & 5
\end{array}\right]\left[\begin{array}{l}
4 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
4 \\
5
\end{array}\right]
$$

