## April 11 Math 1190 sec. 62 Spring 2017

## Section 5.2: The Definite Integral

Definition (Definite Integral)
Let $f$ be defined on an interval $[a, b]$. Let

$$
x_{0}=a<x_{1}<x_{2}<\cdots<x_{n}=b
$$

be any partition of $[a, b]$, and $\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ be any set of sample points. Then the definite integral of $f$ from $a$ to $b$ is denoted and defined by

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}
$$

provided this limit exists. Here, the limit is taken over all possible partitions of $[a, b]$.

## Important Remarks

(1) If the integral does exist, it is a number. That is, it does not depend on the dummy variable of integration. The following are equivalent.

$$
\int_{a}^{b} f(x) d x=\int_{a}^{b} f(t) d t=\int_{a}^{b} f(q) d q
$$

(2) If $f$ is positive and continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=\text { the area under the curve. }
$$

(3) If $f$ is piecewise continuous enclosing region(s) of total area $A_{1}$ above the $x$-axis and enclosing region(s) of total area $A_{2}$ below the $x$-axis, then

$$
\int_{a}^{b} f(x) d x=A_{1}-A_{2}
$$

## For Example...



Figure: $\int_{a}^{b} f(x) d x=$ area of gray region - area of yellow region

## Example

Consider the graph of $y=f(x)$ shown.

$$
A_{2}=\frac{1}{2} b h=\frac{1}{2}(2)(3)=3
$$


$A_{s}^{-\frac{-3}{2}}{ }^{\frac{6}{h}}$
$=\frac{-1(1)}{2}(2)$
$=1$

## Example

Use the graph on the preceding page to evaluate each integral.
$\int_{2}^{7} f(x) d x=3+3-3=3$

$$
A_{1}+A_{2}-A_{3}
$$

$\int_{7}^{9} f(x) d x=-5$

$$
-\left(A_{4}+A_{5}\right)
$$

## Question

Use the graph to evaluate $\int_{0}^{9} f(x) d x$

(a) 6
(b) 2
(c) -2
(d) 4
$4+3+3-(3+5)=2$

## Important Theorems:

Theorem: If $f$ is continuous on $[a, b]$ or has only finitely many jump discontinuities on $[a, b]$, then $f$ is integrable on $[a, b]$

Theorem: If $f$ is continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x
$$

where

$$
\Delta x=\frac{b-a}{n}, \quad \text { and } \quad c_{i}=a+i \Delta x
$$

## A couple of definitions:

Definition: If $f(a)$ is defined, then

$$
\int_{a}^{a} f(x) d x=0 .
$$

In particular, the integral of a continuous function over a single point is zero.

Definition: If $\int_{a}^{b} f(x) d x$ exists, then

$$
\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x
$$

Reversing the limits of integration negates the value of the integral.

Example
It can be shown that $\int_{0}^{\pi} \sin ^{2}(x) d x=\frac{\pi}{2}$.
Evaluate

$$
\begin{aligned}
& \int_{\pi}^{0} \sin ^{2}(t) d t \\
& =-\int_{0}^{\pi} \sin ^{2}(t) d t \\
& =-\frac{\pi}{2}
\end{aligned}
$$

$$
\text { treplacing } x \text { doesint }
$$

affect the value of the integral.

Swapping limits negates the value

## Question

Suppose it is known that $\int_{3}^{10} f(x) d x=-12$
Evaluate $\int_{10}^{3} f(x) d x=-\int_{3}^{10} f(x) d x=-(-12)=12$
(a) 12
(b) -12
(c) $f(10)$
(d) can't be determined without more information

A simple integral
If $f(x)=A$ where $A$ is any constant, then

$$
\int_{a}^{b} f(x) d x=\int_{a}^{b} A d x=A(b-a)
$$




## Question

$$
\begin{aligned}
\int_{3}^{7} \pi d x & = \\
& =\pi(7-3)=4 \pi
\end{aligned}
$$

(b) $7 \pi$
(c) $3 \pi$
(d) can't be determined without more information

## Section 5.3: The Fundamental Theorem of Calculus

Suppose $f$ is continuous on the interval $[a, b]$. For $a \leq x \leq b$ define a new function

$$
g(x)=\int_{a}^{x} f(t) d t
$$

How can we understand this function, and what can be said about it?

Geometric interpretation of $g(x)=\int_{a}^{x} f(t) d t$


Figure

## Theorem: The Fundamental Theorem of Calculus (part 1)

If $f$ is continuous on $[a, b]$ and the function $g$ is defined by

$$
g(x)=\int_{a}^{x} f(t) d t \quad \text { for } \quad a \leq x \leq b
$$

then $g$ is continuous on $[a, b]$ and differentiable on $(a, b)$. Moreover

$$
g^{\prime}(x)=f(x)
$$

This means that the new function $g$ is an antiderivative of $f$ on $(a, b)$ ! "FTC" = "fundamental theorem of calculus"

## Example:

Evaluate each derivative.
(a) $\frac{d}{d x} \int_{0}^{x} \sin ^{2}(t) d t$
(b) $\frac{d}{d x} \int_{4}^{x} \frac{t-\cos t}{t^{4}+1} d t=\frac{x-\cos x}{x^{4}+1}$

$$
\begin{gathered}
f(t)=\frac{t-\cos t}{t^{4}+1} \\
a=4
\end{gathered}
$$

## Question

Evaluate $\frac{d}{d x} \int_{2}^{x} e^{3 t^{2}} d t$
(a) $e^{3 x^{2}}$

$$
\begin{gathered}
f(t)=e \\
\text { so }
\end{gathered}
$$

$$
3 x^{2}
$$

(b) $6 x e^{3 x^{2}}$
$f(x)=e$
(c) $e^{3 x^{2}}-e^{12}$

## Geometric Argument of FTC



Recall

$$
g^{\prime}(x)=\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}
$$

$$
\begin{aligned}
& \text { exact red area }=g(x+h)-g(x) \\
& \approx h f(x) \leftarrow \text { red rectangle } \\
& \text { area }
\end{aligned}
$$

$\Rightarrow \frac{g(x+h)-g(x)}{h} \approx f(x)$ where the approximation gets better as $h$ gets smaller.

$$
\Rightarrow g^{\prime}(x)=\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}=\lim _{h \rightarrow 0} f(x)=f(x)
$$

h gets smaller!

Chain Rule with FTC
Evaluate each derivative.
(a) $\frac{d}{d x} \int_{0}^{x^{2}} t^{3} d t$

$$
\text { FTC } \frac{d}{d x} \int_{a}^{x} f(x) d t=f(x)
$$

Chain rube

$$
\frac{d}{d x} F(u)=F^{\prime}(u) \cdot u^{\prime}(x)
$$

$$
\begin{aligned}
& \int_{0}^{x^{2}} t^{3} d t \text { is a composition } \\
& f(u)=\int_{t^{3} d}^{u}
\end{aligned}
$$

${ }_{0}$ outside $F(u)=\int_{0}^{u} t^{3} d t \Rightarrow F^{\prime}(u)=u^{3}$
and inside $u=x^{2} \Rightarrow u^{\prime}(x)=2 x$
So

$$
\begin{array}{r}
\frac{d}{d x} \int_{0}^{x^{2}} t^{3} d t=\left(x^{2}\right)^{3} \cdot(2 x)=2 x^{7} \\
F^{\prime}(\omega) \quad \uparrow \omega^{\prime}(x)
\end{array}
$$

(b) $\frac{d}{d x} \int_{x}^{7} \cos \left(t^{2}\right) d t$
we need the $x$ as the upper limit!

FTC $\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)$
The lower limit is constant, the upper is $x$.

Note

$$
\int_{x}^{7} \cos \left(t^{2}\right) d t=-\int_{7}^{x} \cos \left(t^{2}\right) d t
$$

so

$$
\begin{aligned}
\frac{d}{d x} \int_{x}^{7} \cos \left(t^{2}\right) d t & =\frac{d}{d x}\left(-\int_{7}^{x} \cos \left(t^{2}\right) d t\right) \\
& =-\frac{d}{d x} \int_{7}^{x} \cos \left(t^{2}\right) d t=-\cos \left(x^{2}\right)
\end{aligned}
$$

April 4, $2017 \quad 21 / 31$

Question
Use the chain rule where $f(u)=\int_{1}^{u} \sin ^{-1} t d t$ and $u=7 x$ to evaluate

$$
\frac{d}{d x} \int_{1}^{7 x} \sin ^{-1} t d t
$$

(a) $\frac{1}{\sqrt{1-7 x^{2}}}$
(b) $\sin ^{-1}(7 x)$
(c) $\frac{7}{\sqrt{1-49 x^{2}}}$
(dd) $7 \sin ^{-1}(7 x)$

By the FTC

$$
f^{\prime}(u)=\sin ^{-1} u
$$

$$
u^{\prime}(x)=7
$$

so

$$
\begin{aligned}
f^{\prime}(u) \cdot u^{\prime}(x) & =\sin ^{-1} u \cdot 7 \\
& =7 \sin ^{-1}(7 x)
\end{aligned}
$$

## Theorem: The Fundamental Theorem of Calculus (part 2)

If $f$ is continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where $F$ is any antiderivative of $f$ on $[a, b]$. (i.e. $F^{\prime}(x)=f(x)$ )
To evaluate $\int_{a}^{b} f(x) d x$

- find an ontiderivative $F$ of $f$
- Compute $F(b)$ and $F(a)$
- Thin take the difference $F(b)-F(a)$.

Example: Use the FTC to show that $\int_{0}^{b} x d x=\frac{b^{2}}{2}$
Here, $a=0$ (lower limit), $b=b$ (the upper limit) and $f(x)=x$. (ie. $x^{2}$ )

Using the power rule, we can take

$$
F(x)=\frac{x^{1+1}}{1+1}=\frac{x^{2}}{2}
$$

$F(b)=\frac{b^{2}}{2}$ and $F(a)=F(0)=\frac{0^{2}}{2}=0$
s. $\int_{0}^{b} x d x=\frac{b^{2}}{2}-0=\frac{b^{2}}{2}$

## Notation

Suppose $F$ is an antiderivative of $f$. We write

$$
\int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a)
$$

or sometimes

$$
\left.\int_{a}^{b} f(x) d x=F(x)\right]_{a}^{b}=F(b)-F(a)
$$

For example

$$
\int_{0}^{b} x d x=\left.\frac{x^{2}}{2}\right|_{0} ^{b}=\frac{b^{2}}{2}-\frac{0^{2}}{2}=\frac{b^{2}}{2}
$$

Evaluate each definite integral using the FTC
(a) $\int_{0}^{2} 3 x^{2} d x=\left.x^{3}\right|_{0} ^{2}=2^{3}-0^{3}=8-0=8$

Antiderivative $\quad f(x)=3 x^{2} \quad F(x)=3 \frac{x^{3}}{3}=x^{3}$ power rule
(b) $\int_{\frac{\pi}{2}}^{\pi} \cos x d x=\left.\sin x\right|^{\pi}=\sin \pi-\sin \frac{\pi}{2}$

$$
\frac{\pi}{2}=0-1=-1
$$



Antidenivatime $f(x)=\cos x \quad F(x)=\sin x$

