
April 11 Math 1190 sec. 63 Spring 2017

Section 5.2: The Definite Integral

Definition (Definite Integral)
Let f be defined on an interval [a,b]. Let

x0 = a < x1 < x2 < · · · < xn = b

be any partition of [a,b], and {c1, c2, . . . , cn} be any set of sample
points. Then the definite integral of f from a to b is denoted and
defined by ∫ b

a
f (x) dx = lim

n→∞

n∑
i=1

f (ci)∆xi

provided this limit exists. Here, the limit is taken over all possible
partitions of [a,b].
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Important Remarks
(1) If the integral does exist, it is a number. That is, it does not depend
on the dummy variable of integration. The following are equivalent.∫ b

a
f (x) dx =

∫ b

a
f (t) dt =

∫ b

a
f (q) dq

(2) If f is positive and continuous on [a,b], then∫ b

a
f (x) dx = the area under the curve.

(3) If f is piecewise continuous enclosing region(s) of total area A1
above the x-axis and enclosing region(s) of total area A2 below the
x-axis, then ∫ b

a
f (x) dx = A1 − A2
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For Example...

Figure:
∫ b

a f (x) dx = area of gray region − area of yellow region

April 4, 2017 3 / 31



Example
Consider the graph of y = f (x) shown.
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Example
Use the graph on the preceding page to evaluate each integral.∫ 7

2
f (x) dx =

∫ 9

7
f (x) dx =
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Question

Use the graph to evaluate
∫ 9

0
f (x) dx
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Important Theorems:

Theorem: If f is continuous on [a,b] or has only finitely many jump
discontinuities on [a,b], then f is integrable on [a,b]

Theorem: If f is continuous on [a,b], then∫ b

a
f (x) dx = lim

n→∞

n∑
i=1

f (ci)∆x ,

where
∆x =

b − a
n

, and ci = a + i∆x .
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A couple of definitions:

Definition: If f (a) is defined, then∫ a

a
f (x) dx = 0.

In particular, the integral of a continuous function over a single point is
zero.

Definition: If
∫ b

a f (x) dx exists, then∫ a

b
f (x) dx = −

∫ b

a
f (x) dx

Reversing the limits of integration negates the value of the integral.
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Example

It can be shown that
∫ π

0
sin2(x) dx =

π

2
.

Evaluate

∫ 0

π
sin2(t) dt
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Question

Suppose it is known that
∫ 10

3
f (x) dx = −12

Evaluate
∫ 3

10
f (x) dx

(a) 12

(b) −12

(c) f (10)

(d) can’t be determined without more information
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A simple integral
If f (x) = A where A is any constant, then∫ b

a
f (x) dx =

∫ b

a
A dx = A(b − a).
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Question

∫ 7

3
π dx =

(a) 4π

(b) 7π

(c) 3π

(d) can’t be determined without more information
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Section 5.3: The Fundamental Theorem of Calculus

Suppose f is continuous on the interval [a,b]. For a ≤ x ≤ b define a
new function

g(x) =

∫ x

a
f (t) dt

How can we understand this function, and what can be said about it?
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Geometric interpretation of g(x) =
∫ x

a f (t)dt

Figure
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Theorem: The Fundamental Theorem of Calculus
(part 1)

If f is continuous on [a,b] and the function g is defined by

g(x) =

∫ x

a
f (t) dt for a ≤ x ≤ b,

then g is continuous on [a,b] and differentiable on (a,b). Moreover

g′(x) = f (x).

This means that the new function g is an antiderivative of f on (a,b)!
”FTC” = ”fundamental theorem of calculus”
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Example:
Evaluate each derivative.

(a)
d
dx

∫ x

0
sin2(t) dt

(b)
d
dx

∫ x

4

t − cos t
t4 + 1

dt

April 4, 2017 16 / 31

lritter
Pen

lritter
Pen

lritter
Pen

lritter
Pen

lritter
Pen

lritter
Pen

lritter
Pen

lritter
Pen

lritter
Pen



Question

Evaluate
d
dx

∫ x

2
e3t2

dt

(a) e3x2

(b) 6xe3x2

(c) e3x2−e12
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Geometric Argument of FTC

Figure
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Chain Rule with FTC
Evaluate each derivative.

(a)
d
dx

∫ x2

0
t3 dt
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(b)
d
dx

∫ 7

x
cos(t2) dt
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Question
Use the chain rule where f (u) =

∫ u
1 sin−1 t dt and u = 7x to evaluate

d
dx

∫ 7x

1
sin−1 t dt

(a) 1√
1−7x2

(b) sin−1(7x)

(c) 7√
1−49x2

(d) 7 sin−1(7x)
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Theorem: The Fundamental Theorem of Calculus
(part 2)

If f is continuous on [a,b], then

∫ b

a
f (x) dx = F (b)− F (a)

where F is any antiderivative of f on [a,b]. (i.e. F ′(x) = f (x))
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Example: Use the FTC to show that
∫ b

0 x dx = b2

2
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Notation

Suppose F is an antiderivative of f . We write

∫ b

a
f (x) dx = F (x)

∣∣∣∣∣
b

a

= F (b)− F (a)

or sometimes

∫ b

a
f (x) dx = F (x)

]b

a

= F (b)− F (a)

For example ∫ b

0
x dx =

x2

2

∣∣∣∣b
0

=
b2

2
− 02

2
=

b2

2
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Evaluate each definite integral using the FTC

(a)
∫ 2

0
3x2 dx
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(b)
∫ π

π
2

cos x dx
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Question

(c)
∫ 9

1

1
2

u−1/2 du

(a) 8

(b) 13
54

(c) 2

(d) −1
3
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(d)
∫ 1/2

0

1√
1− t2

dt
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Caveat! The FTC doesn’t apply if f is not continuous!

The function f (x) = 1
x2 is positive everywhere on its domain. Now

consider the calculation∫ 2

−1

1
x2 dx =

x−1

−1

∣∣∣∣2
−1

= −1
2
− 1 = −3

2

Is this believable? Why or why not?
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An Observation

If f is differentiable on [a,b], note that∫ b

a
f ′(x) dx = f (b)− f (a).

This says that:

The integral of the rate of change of f over the interval [a,b] is the net
change of the function, f (b)− f (a), over this interval.

Remember the example: the area under the velocity curve gave the
net change in position!
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