April 11 Math 1190 sec. 63 Spring 2017

Section 5.2: The Definite Integral

Definition (Definite Integral)
Let f be defined on an interval $[a, b]$. Let

$$
x_{0}=a<x_{1}<x_{2}<\cdots<x_{n}=b
$$

be any partition of $[a, b]$, and $\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ be any set of sample points. Then the definite integral of f from a to b is denoted and defined by

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}
$$

provided this limit exists. Here, the limit is taken over all possible partitions of $[a, b]$.

Important Remarks

(1) If the integral does exist, it is a number. That is, it does not depend on the dummy variable of integration. The following are equivalent.

$$
\int_{a}^{b} f(x) d x=\int_{a}^{b} f(t) d t=\int_{a}^{b} f(q) d q
$$

(2) If f is positive and continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=\text { the area under the curve. }
$$

(3) If f is piecewise continuous enclosing region(s) of total area A_{1} above the x-axis and enclosing region(s) of total area A_{2} below the x-axis, then

$$
\int_{a}^{b} f(x) d x=A_{1}-A_{2}
$$

For Example...

Figure: $\int_{a}^{b} f(x) d x=$ area of gray region - area of yellow region

Example

Consider the graph of $y=f(x)$ shown.
$A_{2}=\frac{1}{2} b h=\frac{1}{2}(2)$

$\begin{aligned} & A_{5}^{=\frac{1}{2}} b^{h} \\ &=\frac{1}{2}(1)(2) \\ &=1\end{aligned}$

Example
Use the graph on the preceding page to evaluate each integral.

$$
\int_{2}^{7} f(x) d x=3+3-3=3
$$

$$
\int_{7}^{9} f(x) d x=-5
$$

$$
A_{1}+A_{2}-A_{3}
$$

$$
-\left(A_{4}+A_{5}\right)
$$

Question

Use the graph to evaluate $\int_{0}^{9} f(x) d x$

(a) 6
(b) 2
(c) -2
(d) 4
$4+3+3-(3+5)=2$

Important Theorems:

Theorem: If f is continuous on $[a, b]$ or has only finitely many jump discontinuities on $[a, b]$, then f is integrable on $[a, b]$

Theorem: If f is continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x
$$

where

$$
\Delta x=\frac{b-a}{n}, \quad \text { and } \quad c_{i}=a+i \Delta x
$$

A couple of definitions:

Definition: If $f(a)$ is defined, then

$$
\int_{a}^{a} f(x) d x=0
$$

In particular, the integral of a continuous function over a single point is zero.

Definition: If $\int_{a}^{b} f(x) d x$ exists, then

$$
0^{5} f^{y^{4}} \rightarrow \int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x
$$

Reversing the limits of integration negates the value of the integral.

Example
It can be shown that $\int_{0}^{\pi} \sin ^{2}(x) d x=\frac{\pi}{2}$.
Evaluate

$$
\begin{aligned}
& \int_{\pi}^{0} \sin ^{2}(t) d t \\
&=-\int_{0}^{\pi} \sin ^{2}(t) d t \\
&=-\frac{\pi}{2}
\end{aligned}
$$

replacing the dummy x with t doesn't affect the value.
switching the limits negates the value.

Question

Suppose it is known that $\int_{3}^{10} f(x) d x=-12$
Evaluate $\int_{10}^{3} f(x) d x=-\int_{3}^{10} f(x) d x=-(-12)=12$
(a) 12
(b) -12
(c) $f(10)$
(d) can't be determined without more information

A simple integral

If $f(x)=A$ where A is any constant, then

$$
\int_{a}^{b} f(x) d x=\int_{a}^{b} A d x=A(b-a)
$$

Question

$$
\int_{3}^{7} \pi d x=\pi(7-3)=4 \pi
$$

$(a) 4 \pi$
(b) 7π
(c) 3π
(d) can't be determined without more information

Section 5.3: The Fundamental Theorem of Calculus

Suppose f is continuous on the interval $[a, b]$. For $a \leq x \leq b$ define a new function

$$
\begin{aligned}
& g(x)=\int_{a}^{x} f(t) d t \quad \text { tis a dumny } \\
& \text { varichle, dent, } x . \\
& \text { the independ is is } x .
\end{aligned}
$$

How can we understand this function, and what can be said about it?

Geometric interpretation of $g(x)=\int_{a}^{x} f(t) d t$

Figure

Theorem: The Fundamental Theorem of Calculus (part 1)

If f is continuous on $[a, b]$ and the function g is defined by

$$
g(x)=\int_{a}^{x} f(t) d t \quad \text { for } \quad a \leq x \leq b
$$

then g is continuous on $[a, b]$ and differentiable on (a, b). Moreover

$$
\begin{aligned}
& g^{\prime}(x)=f(x) . \\
& \text { The integrand } \\
& \text { ovaluated }
\end{aligned} e^{x} .
$$

This means that the new function g is an antiderivative of f on (a, b) ! "FTC" = "fundamental theorem of calculus"

Example:
Evaluate each derivative.
Here, $f(t)=\sin ^{2}(t)$
(a) $\frac{d}{d x} \int_{0}^{x} \sin ^{2}(t) d t=\sin ^{2}(x)$

$$
\begin{aligned}
& a=0 \text { and } \\
& g(x)=\int_{0}^{x} \sin ^{2}(t) d t \\
& f(x)=\sin ^{2}(x)
\end{aligned}
$$

(b) $\frac{d}{d x} \int_{4}^{x} \frac{t-\cos t}{t^{4}+1} d t=\frac{x-\cos x}{x^{4}+1} \quad$ Here $f(t)=\frac{t-\cos t}{t^{4}+1}, a=4$

Question

Evaluate $\frac{d}{d x} \int_{2}^{x} e^{3 t^{2}} d t$
(a) $e^{3 x^{2}}$

$$
\begin{aligned}
& f(t)=e^{3 t^{2}} \\
& \text { so } \quad f(x)=e^{3 x^{2}}
\end{aligned}
$$

(b) $6 x e^{3 x^{2}}$
(c) $e^{3 x^{2}}-e^{12}$

Geometric Argument of FTC

Recall $g^{\prime}(x)=\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}$

$$
\begin{aligned}
& g(x+h)-g(x) \approx h f(x) \\
& \Rightarrow \frac{g(x+h)-g(x)}{h} \approx f(x)
\end{aligned}
$$

and the approximation gets bette the smaller h is.

$$
\Rightarrow \lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}=f(x)
$$

Chain Rule with FTC
Evaluate each derivative.

$$
\text { FTC } \frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

(a) $\frac{d}{d x} \int_{0}^{x^{2}} t^{3} d t$

Chain rube

$$
\frac{d}{d x} F(u(x))=F^{\prime}(u) \cdot u^{\prime}(x)
$$

This is a composition

$$
\left.\begin{array}{l}
\text { This is a composition } \\
\text { with inside } u(x)=x^{2} \\
\text { and outside } \\
F(u)=\int_{0}^{u} t^{3} d t \\
F^{\prime}(u)=u^{3} \text { and } u^{\prime}(x)=2 x
\end{array}\right\} \frac{d}{d x} \int_{0}^{x^{2}} t^{3} d t=\left(x^{2}\right)^{3} \cdot(2 x) 8=x^{6} \cdot 2 x=2 x^{7}
$$

(b) $\frac{d}{d x} \int_{x}^{7} \cos \left(t^{2}\right) d t$

FTC

$$
\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

To use the FTC, first note that

$$
\int_{x}^{7} \cos \left(t^{2}\right) d t=-\int_{7}^{x} \cos \left(t^{2}\right) d t
$$

So

$$
\begin{aligned}
\frac{d}{d x} \int_{x}^{7} \cos \left(t^{2}\right) d t & =\frac{d}{d x}\left(-\int_{7}^{x} \cos \left(t^{2}\right) d t\right) \\
& =-\frac{d}{d x} \int_{7}^{x} \cos \left(t^{2}\right) d t=-\cos \left(x^{2}\right)
\end{aligned}
$$

Question
Use the chain rule where $f(u)=\int_{1}^{u} \sin ^{-1} t d t$ and $u=7 x$ to evaluate $\frac{d}{d x} \int_{1}^{7 x} \sin ^{-1} t d t$

$$
f^{\prime}(u)=\sin ^{-1} u \text { bs the FTC }
$$

(a) $\frac{1}{\sqrt{1-7 x^{2}}}$

$$
u^{\prime}(x)=7
$$

(b) $\sin ^{-1}(7 x)$

So

$$
\begin{aligned}
& f^{\prime}(u) \cdot n^{\prime}(x) \\
& =\left(\sin ^{-1} u\right) 7=7 \sin ^{-1}(7 x)
\end{aligned}
$$

(c) $\frac{7}{\sqrt{1-49 x^{2}}}$
(d) $7 \sin ^{-1}(7 x)$

Theorem: The Fundamental Theorem of Calculus (part 2)

If f is continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where F is any antiderivative of f on $[a, b]$. (i.e. $F^{\prime}(x)=f(x)$)
to evaluate $\int_{a}^{b} f(x) d x$

- Find on contiderivative $F(x)$.
- Find the numbers $F(b)$ and $F(a)$
- Compute the difference $F(b)-F(a)$

Example: Use the FTC to show that $\int_{0}^{b} x d x=\frac{b^{2}}{2}$
Here $a=0, b=b, f(x)=x$ (x to the 1 power)
An antiderivative is $\quad F(x)=\frac{x^{1+1}}{1+1}=\frac{x^{2}}{2}$

$$
\begin{aligned}
& F(b)=\frac{b^{2}}{2} \text { and } F(a)=F(0)=\frac{0^{2}}{2}=0 \\
& \text { s. } \quad \int_{0}^{b} x d x=F(b)-F(a)=\frac{b^{2}}{2}-0=\frac{b^{2}}{2}
\end{aligned}
$$

Notation

Suppose F is an antiderivative of f. We write

$$
\int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a)
$$

or sometimes

$$
\left.\int_{a}^{b} f(x) d x=F(x)\right]_{a}^{b}=F(b)-F(a)
$$

For example

$$
\int_{0}^{b} x d x=\left.\frac{x^{2}}{2}\right|_{0} ^{b}=\frac{b^{2}}{2}-\frac{0^{2}}{2}=\frac{b^{2}}{2}
$$

Evaluate each definite integral using the FTC
(a) $\int_{0}^{2} 3 x^{2} d x=\left.x^{3}\right|_{0} ^{2}=2^{3}-0^{3}=8-0=8$

Side note: $f(x)=3 x^{2}$, an antidelvative is

$$
F(x)=x^{3} \quad F(x)=3 \cdot \frac{x^{2+1}}{2+1}=3 \frac{x^{3}}{3}=x^{3}
$$

power rule
(b)

$$
\begin{aligned}
\int_{\frac{\pi}{2}}^{\pi} \cos x d x=\left.\sin x\right|_{\pi / 2} ^{\pi} & =\sin \pi-\sin \frac{\pi}{2} \\
& =0-1=-1
\end{aligned}
$$

For $f(x)=\cos x$, an cutidnivative $F(x)=\sin x$

Question
(c) $\int_{1}^{9} \frac{1}{2} u^{-1 / 2} d u=\left.\sqrt{u}\right|_{1} ^{9}$

$$
=\sqrt{9}-\sqrt{1} \quad f(u)=\frac{1}{2} u^{-1 / 2}, \quad F(u)=u^{1 / 2}
$$

(a) $8 \quad=3-1=2$
ponen rube $1 / 2+1$

$$
\frac{1}{2} \frac{u^{-1 / 2+1}}{-1 / 2}=\frac{1}{2} \frac{u^{1 / 2}}{1 / 2}
$$

(b) $\frac{13}{54}$
(c) 2

$$
=u^{1 / 2}
$$

(d) $-\frac{1}{3}$
(d)

$$
\begin{aligned}
\int_{0}^{1 / 2} \frac{1}{\sqrt{1-t^{2}}} d t=\left.\sin ^{-1} t\right|_{0} ^{1 / 2} & =\sin ^{-1}\left(\frac{1}{2}\right)-\sin ^{-1}(0) \\
& =\frac{\pi}{6}-0=\frac{\pi}{6} \\
f(t)=\frac{1}{\sqrt{1-t^{2}}}, \quad F(t) & =\sin ^{-1} t
\end{aligned}
$$

Caveat! The FTC doesn't apply if f is not continuous!

The function $f(x)=\frac{1}{x^{2}}$ is positive everywhere on its domain. Now consider the calculation

$$
\int_{-1}^{2} \frac{1}{x^{2}} d x=\left.\frac{x^{-1}}{-1}\right|_{-1} ^{2}=-\frac{1}{2}-1=-\frac{3}{2}
$$

Is this believable? Why or why not?
f is norm negative, a negation integral mokes no sense! The integral is undefined.

An Observation

If f is differentiable on $[a, b]$, note that

$$
\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)
$$

This says that:
The integral of the rate of change of f over the interval $[a, b]$ is the net change of the function, $f(b)-f(a)$, over this interval.

Remember the example: the area under the velocity curve gave the net change in position!

