April 10 Math 3260 sec. 55 Spring 2018

Section 6.3: Orthogonal Projections

Theorem: If $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is an orthonormal basis of a subspace W of \mathbb{R}^{n}, and \mathbf{y} is any vector in \mathbb{R}^{n} then

$$
\operatorname{proj}_{w} \mathbf{y}=\sum_{j=1}^{p}\left(\mathbf{y} \cdot \mathbf{u}_{j}\right) \mathbf{u}_{j}
$$

And, if U is the matrix $U=\left[\begin{array}{lll}\mathbf{u}_{1} & \cdots & \mathbf{u}_{p}\end{array}\right]$, then the above is equivalent to

$$
\operatorname{proj}_{W} \mathbf{y}=U U^{T} \mathbf{y} .
$$

Remark: Note that the projection doesn't depend on which basis used as long as it is an orthonormal basis. But this does raise a question about how one might obtain an orthonormal basis,

Section 6.4: Gram-Schmidt Orthogonalization
Question: Given any-old basis for a subspace W of \mathbb{R}^{n}, can we construct an orthogonal basis for that same space?

Example: Let $W=\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ -1 \\ -1\end{array}\right]\right\}$. Find an orthogonal basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ that spans W.

To ensure \vec{v}_{1}, \vec{v}_{2} are in W, we writ

$$
\vec{v}_{1}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2} \text { and } \quad \vec{v}_{2}=d_{1} \vec{x}_{1}+d_{2} \vec{x}_{2}
$$

we ned to choose $c_{1}, c_{3}, d_{1}, d_{2}$ so that $\vec{v}_{1} \cdot \vec{v}_{2}=0$.
Let's let $c_{1}=1, c_{2}=0$ so $\vec{v}_{1}=\vec{x}_{1}$.

To ensure we get \vec{x}_{2} stuff let's set $d_{2}=1$. So

$$
\vec{v}_{2}=\vec{x}_{2}+d_{1} \vec{x}_{1}=\vec{x}_{2}+d_{1} \vec{v}_{1} \quad \text { since } \vec{v}_{1}=\vec{x}_{1}
$$

we insist that $\vec{v}_{1} \cdot \vec{v}_{2}=0$

$$
\begin{aligned}
& \vec{v}_{2} \cdot \vec{v}_{1}=\left(\vec{x}_{2}+d_{1} \vec{v}_{1}\right) \cdot \vec{v}_{1} \\
& 0
\end{aligned} \begin{aligned}
& \quad \vec{x}_{2} \cdot \vec{v}_{1}+d_{1} \vec{v}_{1} \cdot \vec{v}_{1} \\
& \Rightarrow \quad d_{1} \vec{v}_{1} \cdot \vec{v}_{1}=-\vec{x}_{2} \cdot \vec{v}_{1} \Rightarrow d_{1}=\frac{-\vec{x}_{2} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}}=\frac{-\vec{x}_{2} \cdot \vec{v}_{1}}{\left\|\vec{v}_{1}\right\|^{2}} \\
& \vec{x}_{2} \cdot \vec{v}_{1}=-2, \quad \vec{v}_{1} \cdot \vec{v}_{1}=1^{2}+1^{2}+1^{2}=3
\end{aligned}
$$

$$
\begin{aligned}
& \vec{V}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
& \vec{V}_{2}=\left[\begin{array}{c}
0 \\
-1 \\
-1
\end{array}\right]+\frac{2}{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
2 / 3 \\
-1 / 3 \\
-1 / 3
\end{array}\right]
\end{aligned}
$$

Note $\vec{V}_{1} \cdot \vec{V}_{2}=1\left(\frac{2}{3}\right)+1\left(\frac{-1}{3}\right)+1\left(-\frac{1}{3}\right)=0$

The new orthogond basis is

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
2 / 3 \\
-1 / 3 \\
-1 / 3
\end{array}\right]\right\}
$$

Theorem: Gram Schmidt Process

Let $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right\}$ be any basis for the nonzero subspace W of \mathbb{R}^{n}. Define the set of vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ via

$$
\begin{aligned}
\mathbf{v}_{1} & =\mathbf{x}_{1} \\
\mathbf{v}_{2} & =\mathbf{x}_{2}-\left(\frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{1} \\
\mathbf{v}_{3} & =\mathbf{x}_{3}-\left(\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{1}-\left(\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}}\right) \mathbf{v}_{2} \\
& \vdots \\
\mathbf{v}_{p} & =\mathbf{x}_{p}-\sum_{j=1}^{p-1}\left(\frac{\mathbf{x}_{p} \cdot \mathbf{v}_{j}}{\mathbf{v}_{j} \cdot \mathbf{v}_{j}}\right) \mathbf{v}_{j} .
\end{aligned}
$$

Then $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is an orthogonal basis for W. Moreover, for each $k=1, \ldots, p$

$$
\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}=\operatorname{Span}\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right\}
$$

Example
Find an orthonormal (that's orthonormal not just orthogonal) basis for Col A where $A=\left[\begin{array}{ccc}-1 & 6 & 6 \\ 3 & -8 & 3 \\ 1 & -2 & 6 \\ 1 & -4 & -3\end{array}\right] . \begin{gathered}\text { These colums ane } \operatorname{lin} . \\ \text { indyerdent (you con } \\ \text { check). }\end{gathered}$

Ow starting basis is

$$
\vec{x}_{1}=\left[\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right], \quad \vec{x}_{2}=\left[\begin{array}{c}
6 \\
-8 \\
-2 \\
-4
\end{array}\right], \vec{x}_{3}=\left[\begin{array}{c}
6 \\
3 \\
6 \\
-3
\end{array}\right]
$$

well use Grem-Schmidt to get on orthogund basis $\left\{\vec{V}_{1}, \vec{V}_{2}, \vec{V}_{3}\right\}$.

$$
\begin{aligned}
& \vec{V}_{1}=\vec{x}_{1}=\left[\begin{array}{l}
-1 \\
3 \\
1 \\
1
\end{array}\right] \quad \vec{x}_{2} \cdot \vec{v}_{1}=-36 \\
& \vec{v}_{2}=\vec{x}_{2}-\frac{\vec{x}_{2} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1} \quad \vec{v}_{1} \cdot \vec{v}_{1}=12 \\
&=\left[\begin{array}{c}
6 \\
-8 \\
-2 \\
-4
\end{array}\right]-\frac{-36}{12}\left[\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
6 \\
-3 \\
-2 \\
-4
\end{array}\right]+3\left[\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
3 \\
1 \\
1 \\
-1
\end{array}\right] \\
& \vec{V}_{3}=\vec{x}_{3}-\frac{\vec{x}_{3} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{V}_{1}-\frac{\vec{x}_{3} \cdot \vec{v}_{2}}{\vec{v}_{2} \cdot \vec{v}_{2}} \vec{V}_{2} \\
& \vec{x}_{3} \cdot \vec{v}_{1}=6, \quad \vec{x}_{3} \cdot \vec{V}_{2}=30 \quad \vec{v}_{2} \cdot \vec{v}_{2}=12
\end{aligned}
$$

April 10, $2018 \quad 7 / 44$

$$
\begin{aligned}
\vec{V}_{3} & =\left[\begin{array}{c}
6 \\
3 \\
6 \\
-3
\end{array}\right]-\frac{6}{12}\left[\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right]-\frac{30}{12}\left[\begin{array}{c}
3 \\
1 \\
1 \\
-1
\end{array}\right] \\
& =\left[\begin{array}{c}
6 \\
3 \\
6 \\
-3
\end{array}\right]-\frac{1}{2}\left[\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right]-\frac{5}{2}\left[\begin{array}{c}
3 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
-1 \\
3 \\
-1
\end{array}\right]
\end{aligned}
$$

Our orthogoual baris is

$$
\left\{\vec{V}_{1}, \vec{V}_{2}, \vec{V}_{3}\right\}=\left\{\left[\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
3 \\
1 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{c}
-1 \\
-1 \\
3 \\
-1
\end{array}\right]\right\}
$$

To get an orthunornd basis, we normalize.
Note that

$$
\left\|\vec{v}_{1}\right\|=\left\|\vec{v}_{2}\right\|=\left\|\vec{v}_{3}\right\|=\sqrt{12}
$$

Calling the orthonormal basis $\left\{\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}\right\}$
we have

$$
\begin{gathered}
\vec{w}_{1}=\frac{1}{\sqrt{12}}\left[\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right], \vec{w}_{2}=\frac{1}{\sqrt{12}}\left[\begin{array}{c}
3 \\
1 \\
1 \\
-1
\end{array}\right], \text { and } \\
\vec{w}_{3}=\frac{1}{\sqrt{12}}\left[\begin{array}{c}
-1 \\
-1 \\
3 \\
-1
\end{array}\right] .
\end{gathered}
$$

Section 5.1: Eigenvectors and Eigenvalues ${ }^{1}$

Consider the matrix $A=\left[\begin{array}{cc}3 & -2 \\ 1 & 0\end{array}\right]$ and the vectors $\mathbf{u}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ and
$\mathbf{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$. Plot $\mathbf{u}, A \mathbf{u}, \mathbf{v}$, and $A \mathbf{v}$ on the axis on the next slide.

$$
\begin{aligned}
& A_{u}=\left[\begin{array}{ll}
3 & -2 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-5 \\
-1
\end{array}\right] \\
& A_{v}=\left[\begin{array}{ll}
3 & -2 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
2
\end{array}\right]
\end{aligned}
$$

${ }^{1}$ We'll forgo section 6.7 and come back if time allows

Example Plot

Eigenvalues and Eigenvectors

Note that in this example, the matrix A seems to both stretch and rotate the vector \mathbf{u}. But the action of A on the vector \mathbf{v} is just a stretch/compress.

We wish to consider matrices with vectors that satisfy relationships such as

$$
A \mathbf{x}=2 \mathbf{x}, \quad \text { or } \quad A \mathbf{x}=-4 \mathbf{x}, \quad \text { or more generally } \quad A \mathbf{x}=\lambda \mathbf{x}
$$

for constant λ-and for nonzero vector \mathbf{x}.

Definition of Eigenvector and Eigenvalue

Definition: Let A be an $n \times n$ matrix. A nonzero vector \mathbf{x} such that

$$
A \mathbf{x}=\lambda \mathbf{x}
$$

for some scalar λ is called an eigenvector of the matrix A.

A scalar λ such that there exists a nonzero vector \mathbf{x} satisfying $A \mathbf{x}=\lambda \mathbf{x}$ is called an eigenvalue of the matrix A. Such a nonzero vector \mathbf{x} is an eigenvector corresponding to λ.

Note that built right into this definition is that the eigenvector \mathbf{x} must be nonzero!

Example
The number $\lambda=-4$ is an eigenvalue of the matrix matrix $A=\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]$. Find the corresponding eigenvectors.
$A_{n y}$ eigenvector \vec{x} wald hare to satisfy $A \vec{x}=-4 \vec{x}$.
Letting $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$

$$
A \vec{x}=-4 \vec{x} \Rightarrow\left[\begin{array}{ll}
1 & 6 \\
5 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=-4\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \Rightarrow \begin{aligned}
& x_{1}+6 x_{2}=-4 x_{1} \\
& 5 x_{1}+2 x_{2}=-4 x_{2}
\end{aligned}
$$

This sims a homogeneous system

$$
\begin{array}{r}
(1-(-4)) x_{1}+6 x_{2}=0 \\
5 x_{1}+(2-(-4)) x_{2}=0
\end{array}
$$

$$
\begin{array}{ccc}
i \varphi & \begin{array}{ll}
s x_{1}+6 x_{2}=0 \\
s x_{1}+6 x_{2}=0
\end{array} & \text { using ref } \\
{\left[\begin{array}{lll}
s & 6 & 0 \\
s & 6 & 0
\end{array}\right] \xrightarrow{\text { ref }}\left[\begin{array}{ccc}
1 & 6 / 5 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \begin{array}{l}
x_{1}=\frac{-6}{5} x_{2} \\
x_{2} \text {-free }
\end{array}}
\end{array}
$$

So all eigen vectors \vec{x} have to look like $\vec{x}=x_{2}\left[\begin{array}{c}-6 / s \\ 1\end{array}\right] \quad$ For eigen vectors, we insist

$$
x_{2} \neq 0
$$

Eigenspace

Definition: Let A be an $n \times n$ matrix and λ and eigenvalue of A. The set of all eigenvectors corresponding to λ together with the zero vector-i.e. the set

$$
\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \text { and } A \mathbf{x}=\lambda \mathbf{x}\right\}
$$

is called the eigenspace of A corresponding to λ.

Remark: The eigenspace is the same as the null space of the matrix $A-\lambda I$. It follows that the eigenspace is a subspace of \mathbb{R}^{n}.

Example
The matrix $A=\left[\begin{array}{ccc}4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8\end{array}\right]$ has eigenvalue $\lambda=2$. Find a basis for the eigenspace of A corresponding to λ.

Lat an eigenvector $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$, then

$$
\begin{aligned}
4 \vec{x}=2 \vec{x} \quad 4 x_{1}-x_{2}+6 x_{3} & =2 x_{1} \\
2 x_{1}+x_{2}+6 x_{3} & =2 x_{2} \\
2 x_{1}-x_{2}+8 x_{3} & =2 x_{3} \\
(4-2) x_{1}-x_{2}+6 x_{3} & =0 \\
2 x_{1}+(1-2) x_{2}+6 x_{3} & =0 \\
2 x_{1}-x_{2}+(8-2) x_{3} & =0
\end{aligned}
$$

New
Coif. matrix

$$
\left[\begin{array}{ccc}
4-\lambda & -1 & 6 \\
2 & 1-\lambda & 6 \\
2 & -1 & 8-\lambda
\end{array}\right]
$$

$$
\begin{gathered}
{\left[\begin{array}{cccc}
2 & -1 & 6 & 0 \\
2 & -1 & 6 & 0 \\
2 & -1 & 6 & 0
\end{array}\right] \stackrel{\text { ret }}{\rightarrow}\left[\begin{array}{cccc}
1 & -1 / 2 & 3 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
x_{1}=\frac{1}{2} x_{2}-3 x_{3} \\
x_{2}, x_{3}-\text { fuel } \\
\\
\vec{X}=x_{2}\left[\begin{array}{c}
1 / 2 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right] \\
\left.\left\{\begin{array}{l}
1 / 2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right]\right\} \text { basis is }
\end{gathered}
$$

