April 13 Math 1190 sec. 63 Spring 2017

Section 5.3: The Fundamental Theorem of Calculus

Theorem: FTC (The Fundamental Theorem of Calculus part 1) If f is continuous on $[a, b]$ and the function g is defined by

$$
g(x)=\int_{a}^{x} f(t) d t \quad \text { for } \quad a \leq x \leq b
$$

then g is continuous on $[a, b]$ and differentiable on (a, b). Moreover

$$
g^{\prime}(x)=f(x)
$$

This means that the new function g is an antiderivative of f on (a, b) ! "FTC" = "fundamental theorem of calculus"

Theorem: The Fundamental Theorem of Calculus (part 2)

If f is continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where F is any antiderivative of f on $[a, b]$. (i.e. $F^{\prime}(x)=f(x)$)

Example

Evaluate

$$
\begin{aligned}
\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \sec ^{2}(t) d t=\left.\tan t\right|_{\pi / 4} ^{\pi / 3} & =\tan \frac{\pi}{3}-\tan \frac{\pi}{4} \\
& =\sqrt{3}-1
\end{aligned}
$$

recoil $\frac{d}{d t} \tan t=\sec ^{2} t$

Example

Evaluate $\frac{d}{d x} \int_{\frac{\pi}{4}}^{x} \sec ^{2}(t) d t$ in two ways.
(a) Using the FTC part 1.

$$
\text { FTC says } \frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

$$
\frac{d}{d x} \int_{\pi / 4}^{x} \sec ^{2} t d t=\sec ^{2} x \quad \text { hen } \quad f(t)=\sec ^{2} t
$$

Example
Evaluate $\frac{d}{d x} \int_{\frac{\pi}{4}}^{x} \sec ^{2}(t) d t$ in two ways.
(b) By using the FTC part 2 to evaluate $\quad g(x)=\int_{\frac{\pi}{4}}^{x} \sec ^{2}(t) d t$, then using regular derivative rules to find $g^{\prime}(x)$.

First, treat " x " like " b ".

$$
\int_{\pi / 4}^{x} \sec ^{2}(t) d t=\left.\tan t\right|_{\pi / 4} ^{x}=\tan x-\tan \pi / 4=\tan x-1
$$

Now, find $g^{\prime}(x)$.

$$
g(x)=\tan x-1 \Rightarrow g^{\prime}(x)=\sec ^{2}(x)-0=\sec ^{2}(x)
$$

Question

$$
\left.\int_{1}^{2} \frac{1}{1+x^{2}} d x=\left.\tan ^{-1} x\right|_{1} ^{2}=\tan ^{-1} 2-\tan ^{-1} \right\rvert\,
$$

(a) $-\frac{1}{6}$
(b) $-\frac{4}{5}$
(c) $\tan ^{-1}(2)$
(d) $\tan ^{-1}(2)-\tan ^{-1}(1)$

Question
(remember: $\int_{b}^{a} f(z) d z=-\int_{a}^{b} f(z) d z$)

$$
\frac{d}{d x} \int_{x}^{3} \tan (z) d z=\frac{d}{d x}\left(-\int_{3}^{x} \tan (z) d z\right)
$$

(a) $\tan (x)$

$$
=-\frac{d}{d x} \int_{0}^{x} \tan (z) d z
$$

$$
=-\tan (x)
$$

(b) $\ln |\sec (3)|-\ln |\sec x|$
(c) $-\tan (x)$
(d) $\sec ^{2}(x)$

Section 5.4: Properties of the Definite Integral

Suppose that f and g are integable on $[a, b]$ and let k be constant.
I. $\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x$
II. $\int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$
II. $\int_{a}^{b}(f(x)-g(x)) d x=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x$

Examples
Suppose $\int_{1}^{4} f(x) d x=3$ and $\int_{1}^{4} g(x) d x=-7$. Evaluate
(i)

$$
\begin{aligned}
\int_{1}^{4}-2 f(x) d x & =-2 \int_{1}^{4} f(x) d x \\
& =-2(3)=-6
\end{aligned}
$$

(ii)

$$
\begin{array}{rlr}
\int_{1}^{4}[f(x)+3 g(x)] d x & =\int_{1}^{4} f(x) d x+\int_{1}^{4} 3 g(x) d x & \text { prop II } \\
& =\int_{1}^{4} f(x) d x+3 \int_{1}^{4} g(x) d x \quad \text { prop I } \\
& =3+3(-7)=3-21=-18
\end{array}
$$

Question

Suppose $\int_{1}^{4} f(x) d x=3$ and $\int_{1}^{4} g(x) d x=-7$. Evaluate

$$
\begin{array}{r}
\int_{1}^{4}[g(x)-3 f(x)] d x: \int_{1}^{4} g(x) d x-3 \int_{1}^{4} f(x) d x \\
=-7-3(3)=-16
\end{array}
$$

(a) 16
(b) -16
(c) -2
(d) 2

The Sum/Difference in General

If $f_{1}, f_{2}, \ldots, f_{n}$ are integrable on $[a, b]$ and $k_{1}, k_{2}, \ldots, k_{n}$ are constants, then

$$
\begin{gathered}
\int_{a}^{b}\left[k_{1} f_{1}(x)+k_{2} f_{2}(x)+\cdots+k_{n} f_{n}(x)\right] d x= \\
k_{1} \int_{a}^{b} f_{1}(x) d x+k_{2} \int_{a}^{b} f_{2}(x) d x+\cdots+k_{n} \int_{a}^{b} f_{n}(x) d x
\end{gathered}
$$

Example

Evaluate

$$
\begin{aligned}
& =\int_{1}^{2} \frac{x^{3}+2 x^{2}+4}{x} d x=\int_{1}^{2}\left(\frac{x^{3}}{x}+\frac{2 x^{2}}{x}+\frac{4}{x}\right) d x \\
= & \int_{1}^{2}\left(x^{2}+2 x+4 \cdot \frac{1}{x}\right) d x \\
= & \int_{1}^{2} x^{2} d x+\int_{1}^{2} 2 x d x+\int_{1}^{2} 4 \cdot \frac{1}{x} d x \\
= & \int_{1}^{2} x^{2} d x+2 \int_{1}^{2} x d x+4 \int_{1}^{2} \frac{1}{x} d x \\
= & \left.\frac{x^{3}}{3}\right|_{1} ^{2}+\left.2 \frac{x^{2}}{2}\right|_{1} ^{2}+\left.4 \ln |x|\right|_{1} ^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2^{3}}{3}-\frac{1^{3}}{3}+\left(2^{2}-1^{2}\right)+(4 \ln |2|-4 \ln |1|) \\
& =\frac{8}{3}-\frac{1}{3}+4-1+4 \ln 2-0 \\
& =\frac{7}{3}+3+4 \ln 2=\frac{7}{3}+\frac{9}{3}+4 \ln 2=\frac{16}{3}+4 \ln 2
\end{aligned}
$$

we conld write

$$
\begin{aligned}
\int_{1}^{2}\left(x^{2}+2 x+4 \cdot \frac{1}{x}\right) d x & =\frac{x^{3}}{3}+x^{2}+\left.4 \ln |x|\right|_{1} ^{2} \\
& =\frac{2^{3}}{3}+2^{2}+4 \ln |2|-\left(\frac{1^{3}}{3}+1^{2}+4 \ln |1|\right)
\end{aligned}
$$

Properties of Definite Integrals Continued...

If f is integrable on any interval containing the numbers a, b, and c, then
(IV) $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$

$$
\begin{array}{ll}
\text { e.s. } & \int_{2}^{9} f(x) d x=\int_{2}^{7} f(x) d x+\int_{7}^{9} f(x) d x \\
\text { ats } & \int_{2}^{7} f(x) d x=\int_{2}^{9} f(x) d x+\int_{9}^{7} f(x) d x
\end{array}
$$

Properties: Bounds on Integrals

(V) If $f(x) \leq g(x)$ for $a \leq x \leq b$, then $\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x$
(VI) And, as an immediate consequence of (V), if $m \leq f(x) \leq M$ for $\begin{aligned} & a \leq x \leq b \text { then } \\ & \int_{a}^{b} m d x \\ & m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a) .\end{aligned}$

If f is continuous on $[a, b]$, we can take m to be the absolute minimum value and M the absolute maximum value of f as guaranteed by the Extreme Value Theorem.

Average Value of a Function and the Mean Value Theorem

Defintion: Let f be continuous on the closed interval $[a, b]$. Then the average value of f on $[a, b]$ is

$$
f_{\text {avg }}=\frac{1}{b-a} \int_{a}^{b} f(x) d x .
$$

Theorem: (The Mean Value Theorem for Integrals) If f is continuous on the interval $[a, b]$, then there exists a number u in $[a, b]$ such that

$$
f(u)=f_{\text {avg }}, \quad \text { i.e. } \quad \int_{a}^{b} f(x) d x=f(u)(b-a) .
$$

Question

Find the average value of $f(x)=\sqrt{x}$ on the interval $[0,4]$. That is, compute

$$
\begin{aligned}
f_{\text {avg }} & =\frac{1}{4-0} \int_{0}^{4} x^{1 / 2} d x \\
& =\frac{1}{4} \int_{0}^{4} x^{1 / 2} d x=\frac{1}{4}\left(\left.\frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1}\right|_{0} ^{4}\right. \\
& =\frac{1}{4}\left(\left.\frac{2}{3} x^{3 / 2}\right|_{0} ^{4}=\frac{1}{4}\left(\frac{2}{3}(4)^{3 / 2}-\frac{2}{3}(0)^{3 / 2}\right)\right. \\
& =\frac{1}{4}\left(\frac{2}{3} \cdot 8\right)=\frac{1}{4} \frac{16}{3}=\frac{4}{3}
\end{aligned}
$$

(a) $\frac{16}{3}$
(d) 2

Question

Find the value of f guaranteed by the MVT for integrals for $f(x)=\sqrt{x}$ on the interval $[0,4]$. That is, find u such that

$$
f(u)=f_{\text {avg }}=\frac{1}{4} \int_{0}^{4} x^{1 / 2} d x=\frac{4}{3}
$$

(a) $\sqrt{\frac{4}{3}}$

$$
f(n)=\frac{4}{3} \Rightarrow \sqrt{n}=\frac{4}{3}
$$

(b) $\frac{2}{\sqrt{3}}$

$$
(\sqrt{4})^{2}=\left(\frac{4}{3}\right)^{2}
$$

$$
u=\frac{16}{9}
$$

(d) $\frac{16}{3}$

MVT for Integrals Example

$$
\int_{0}^{4} \sqrt{x} d x=y e l l \text { ow ana }
$$

$$
f(b)(b-a)=\frac{4}{3}(4-0)=\text { blue area }
$$

Evaluate Each Integral
(a)

$$
\begin{aligned}
& \int_{2}^{1}(t+1)^{2} d t \\
& \text { Square } t+1 \text { first } \\
& (t+1)^{2}=t^{2}+2 t+1 \\
& =\int_{2}^{1}\left(t^{2}+2 t+1\right) d t \\
& =\frac{t^{3}}{3}+2 \frac{t^{2}}{2}+\left.t\right|_{2} ^{1} \\
& =\frac{1^{3}}{3}+1^{2}+1-\left(\frac{2^{3}}{3}+2^{2}+2\right)=\frac{1}{3}+2-\left(\frac{8}{3}+6\right) \\
& =\frac{1}{3}-\frac{8}{3}+2-6=\frac{-7}{3}-4=\frac{7}{3}-\frac{12}{3}=\frac{-19}{3}
\end{aligned}
$$

Question

(b) $\int_{1}^{3} x(3 x+2) d x=\int_{1}\left(3 x^{2}+2 x\right) d x$
(a) 86

$$
=x^{3}+\left.x^{2}\right|_{1} ^{3}=34
$$

(b) 34
(c) 47
(d) 28
(c)

$$
\begin{aligned}
\int_{0}^{\pi / 4} \tan ^{2} \theta d \theta & \begin{array}{r}
\text { Recall the Tris ID } \\
\tan ^{2} \theta+1=\sec ^{2} \theta
\end{array} \\
=\int_{0}^{\pi / 4}\left(\sec ^{2} \theta-1\right) d \theta & \Rightarrow \tan ^{2} \theta=\sec ^{2} \theta \\
=\tan \theta-\left.\theta\right|_{0} ^{\pi / 4} & =\tan \pi / 4-\pi / 4-(\tan 0-0) \\
& =1-\frac{\pi}{4}-0 \\
& =1-\pi / 4
\end{aligned}
$$

(d) $\int_{\pi / 4}^{\pi / 2} \frac{d x}{\sin ^{2} x}=\int_{\pi / 4}^{\pi / 2} \frac{1}{\sin ^{2} x} d x=\int_{\pi / 4}^{\pi / 2} \csc ^{2} x d x$
(a) 1
(b) -1

$$
=-\left.\cot x\right|_{\pi / 4} ^{\pi / 2}
$$

$$
=-\cot \frac{\pi}{2}-\left(-\cot \frac{\pi}{4}\right)
$$

(c) $\frac{1}{1-\frac{1}{\sqrt{2}}}$

$$
=-0-(-1)=1
$$

(d) It is undefined since $\cos (\pi / 2)=0$.

