April 13 Math 2254H sec 015H Spring 2015

Section 11.9: Functions as Power Series

Motivating Example: Let

$$
f(x)=\frac{1}{1-x}, \quad \text { for } \quad-1<x<1
$$

Use the well known relation $\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r}$ for $|r|<1$ to express f as a power series.

$$
\begin{aligned}
& \frac{1}{1-x}=\frac{a}{1-r} \text { if } a=1 \quad \text { and } r=x \\
& \text { for }-1<x<1, \quad|r|=|x|<1 \\
& \text { so } \\
& f(x)=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\ldots
\end{aligned}
$$

Using Part of a Series to Approximate f

Figure: Plot of f along with the first 2, 3, and 4 terms of the series. Near the center, the graphs agree well. The fit breaks down away from the center.

$$
\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r} \text { for }|r|<1
$$

Find a power series representation, in powers of x, of the rational function. Indicate the interval of convergence.

$$
\begin{array}{r}
f(x)=\frac{1}{1+x^{2}}=\frac{1}{1-\left(-x^{2}\right)} \quad \text { If } a=1 \text { and } r=-x^{2} \\
f(x)=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}=1-x^{2}+x^{n}-x^{6}+\ldots
\end{array}
$$

Convergence requires $\left|-x^{2}\right|<1$

$$
\Rightarrow \quad\left|x^{2}\right|<1 \quad \Rightarrow \quad|x|<1
$$

$$
|x|<1 \Rightarrow-1<x<1
$$

Since $\sum_{n=0}^{\infty} a r^{n}$ diverge if $|r|=1$
ow series diverges if $|x|=1$

So the interval convergence is $(-1,1)$.

$$
\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r} \text { for }|r|<1
$$

Find a power series representation, in powers of x, of the rational function. Indicate the interval of convergence.

$$
f(x)=\frac{1}{x-3}=\frac{-1}{3-x}=\frac{-1}{3\left(1-\frac{x}{3}\right)}=\frac{-1 / 3}{1-\frac{x}{3}}
$$

This has the right form for $a=\frac{-1}{3}$ and $r=\frac{x}{3}$

$$
f(x)=\sum_{n=0}^{\infty} \frac{-1}{3}\left(\frac{x}{3}\right)^{n}=\sum_{n=0}^{\infty} \frac{-1}{3} \frac{x^{n}}{3^{n}}=\sum_{n=0}^{\infty} \frac{-x^{n}}{3^{n+1}}
$$

Convergence reguires $\left|\frac{x}{3}\right|<1$ i.e. $|x|<3$.

$$
-3<x<3
$$

is the intervel of convergence.

$$
\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r} \text { for }|r|<1
$$

Find a power series representation, in powers of x, of the rational function, and choose the index so that the power on x is the index (e.g. n). Indicate the interval of convergence.

$$
\begin{array}{r}
f(x)=\frac{4 x^{2}}{x-3} \quad \text { Recall } \quad \sum_{n=0}^{\infty} \frac{-x^{n}}{3^{n+1}}=\frac{1}{x-3} \\
\text { for }-3<x<3
\end{array}
$$

So for $-3<x<3$

$$
\begin{aligned}
& \text { for }-3<x<3 \\
& f(x)=4 x^{2} \sum_{n=0}^{\infty} \frac{-x^{n}}{3^{n+1}}=\sum_{n=0}^{\infty} \frac{-4 x^{n+2}}{3^{n+1}}
\end{aligned}
$$

If we set $k=n+2$ then $n+1=k-1$ and $k=2$ when $n=0$.

$$
f(x)=\sum_{k=2}^{\infty} \frac{-4 x^{k}}{3^{k-1}}
$$

An Alternative Power Series
Find a power series representation, in powers of $x+1$, of the rational function. Indicate the interval of convergence.

$$
\begin{aligned}
f(x)=\frac{1}{x-3} & =\frac{1}{x+1-1-3}=\frac{1}{(x+1)-4} \\
& =\frac{1}{-4\left[1-\frac{(x+1)}{4}\right]}=\frac{-1 / 4}{1-\frac{(x+1)}{4}} \quad \begin{array}{c}
\text { For copeometric } \\
\text { series } \\
a=-1 / 4
\end{array} \\
f(x) & =\sum_{n=0}^{\infty} \frac{-1}{4}\left(\frac{x+1}{4}\right]^{n}=\sum_{n=0}^{\infty} \frac{-(x+1)^{n}}{4^{n+1}}
\end{aligned} \quad \begin{aligned}
& r=\frac{x+1}{4}
\end{aligned}
$$

Convergune requires $\quad\left|\frac{x+1}{4}\right|<1 \Rightarrow|x+1|<4$

$$
-4<x+1<4 \Rightarrow-5<x<3
$$

Theorem: Differentiation and Integration

Theorem: Let $\sum c_{n}(x-a)^{n}$ have positive radius of convergence R, and let the function f be defined by this power series

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\cdots
$$

Then f is differentiable on $(a-R, a+R)$. Moreover,

$$
\begin{gathered}
f^{\prime}(x)=c_{1}+2 c_{2}(x-a)+3 c_{3}(x-a)^{2}+\cdots=\sum_{n=1}^{\infty} n c_{n}(x-a)^{n-1}, \quad \text { and } \\
\int f(x) d x=C+c_{0}(x-a)+c_{1} \frac{(x-a)^{2}}{2}+c_{2} \frac{(x-a)^{3}}{3}+\cdots \\
=C+\sum_{n=0}^{\infty} c_{n} \frac{(x-a)^{n+1}}{n+1}
\end{gathered}
$$

The radius of convergence for each of these series is R,

Guess
That
Function
Let $f(x)$ be given by the following power series. Take a couple of derivatives, and see if you can guess exactly what function f is.

$$
\begin{aligned}
& f(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots \\
f^{\prime}(x)= & 1+\frac{2 x}{2!}+\frac{3 x^{2}}{3!}+\frac{4 x^{3}}{4!}+\frac{5 x^{4}}{5!}+\ldots \\
= & 1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots \\
= & 1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots \\
& =f(x) \quad f^{\prime}(x)=f(x) \Rightarrow f(x)=e^{x}
\end{aligned}
$$

Finding Power Series Representations
Find a power series representation for $f(x)$, and state the interval of convergence.

$$
f(x)=\frac{1}{(x-1)^{2}}
$$

$$
f(x)=\frac{1}{(1-x)^{2}}=\frac{d}{d x} \frac{1}{1-x}
$$

$$
\begin{aligned}
\frac{d}{d x} \frac{1}{1-x}=\frac{d}{d x}(1-x)^{-1} & =-(1-x)^{-2}(-1) \\
& =(1-x)^{-2} \\
& =\frac{1}{(1-x)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{d}{d x}\left(\sum_{n=0}^{\infty} x^{n}\right) \text { for }|x|<1 \\
& =\sum_{n=1}^{\infty} n x^{n-1}
\end{aligned}
$$

The interval of convergence is the som as the interval for th origind one $(-1,1)$.

$$
\begin{aligned}
\frac{d}{d x} \sum_{n=0}^{\infty} x^{n} & =\frac{d}{d x}\left(1+x+x^{2}+x^{3}+x^{4}+\cdots\right) \\
& =1+2 x+3 x^{2}+4 x^{3}+\cdots
\end{aligned}
$$

Finding Power Series Representations
Find a power series representation for $g(x)$, and determine the interval of convergence.

$$
g(x)=\tan ^{-1} x
$$

$$
\text { Note } g^{\prime}(x)=\frac{1}{1+x^{2}}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}
$$

$$
\text { for }-1<x<1
$$

$$
\begin{gathered}
g(x)=\int \frac{1}{1+x^{2}} d x=\int\left(\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}\right) d x \\
=C+\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}
\end{gathered}
$$

$$
\begin{aligned}
& g(x)=C+x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots \\
& g(0)=\tan ^{-1}(0)=C+0-\frac{0^{3}}{3}+\frac{0^{5}}{5}-\frac{0^{7}}{7}+\cdots \\
& 0=C \\
& \tan ^{-1} x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1},|x|<1 \\
& \text { If } x=1, \quad \sum_{n=0}^{\infty} \frac{(-1)^{n} 1^{2 n+1}}{2 n+1}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}
\end{aligned}
$$

This is a connergent alternating Senes.
If $x=-1, \quad \sum_{n=0}^{\infty} \frac{(-1)^{n}(-1)^{2 n+1}}{2 n+1}=\sum_{n=0}^{\infty} \frac{-(-1)^{n}}{2 n+1}$
This is also a convegunt ceternoting semer.

So in fact

$$
\tan ^{-1} x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1},-1 \leq x \leq 1
$$

A series convergent to π
Use the power series for $\tan ^{-1} x$ to deduce a series of rational numbers that converges to π.

$$
\begin{aligned}
\tan ^{-1}(1) & =\sum_{n=0}^{\infty} \frac{(-1)^{n} 1^{2 n+1}}{2 n+1} \\
\frac{\pi}{4} & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} \\
\Rightarrow \pi & =\sum_{n=0}^{\infty} \frac{4(-1)^{n}}{2 n+1}=4-\frac{4}{3}+\frac{4}{5}-\frac{4}{7}+\ldots
\end{aligned}
$$

