April 14 Math 2254H sec 015H Spring 2015

Section 11.9: Functions as Power Series
Find a power series representation for $\ln (4+x)$ and show that it converges on $-4<x \leq 4$.

$$
\begin{aligned}
& \frac{d}{d x} \ln (4+x)=\frac{1}{4+x}=\frac{1}{4\left(1+\frac{x}{4}\right)}=\frac{1 / 4}{1-\left(\frac{-x}{4}\right)} \\
& \text { for } a=\frac{1}{4} \quad r=\frac{-x}{4} \\
& \frac{d}{d x} \ln (4+x)=\sum_{n=0}^{\infty} \frac{1}{4}\left(\frac{-x}{4}\right)^{n} \quad \text { for } \quad\left|\frac{-x}{4}\right|<1 \text { ie. } \\
& \text { Lat } g(x)=\ln (4+x)
\end{aligned}
$$

$$
\begin{aligned}
\frac{d}{d x} \ln (4+x) & =\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{4^{n+1}} \text { for }-4<x<4 \\
\ln (4+x) & =\int \frac{d}{d x} \ln (4+x) d x \\
& =C+\sum_{n=0}^{\infty} \frac{(-1)^{n}}{4^{n+1}} \frac{x^{n+1}}{n+1} \\
& =C+\frac{x}{4}-\frac{x^{2}}{2 \cdot 16}+\frac{x^{3}}{3 \cdot 64}-\ldots \\
g(0) & =\ln (4)=C+0-0+\ldots \Rightarrow c=\ln 4
\end{aligned}
$$

$$
\ln (4+x)=\ln 4+\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n+1}}{(n+1) y^{n+1}} \quad-4<x<4
$$

End point chuck:

$$
x=4 \quad \sum_{n=0}^{\infty} \frac{(-1)^{n} 4^{n+1}}{(n+1) 4^{n+1}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1}
$$

The alt harmonic series which converges.

$$
\begin{aligned}
& x=-4 \quad \sum_{n=0}^{\infty} \frac{(-1)^{n}(-4)^{n+1}}{(n+1) 4^{n+1}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(\frac{-4}{4}\right)^{n+1}}{n+1} \\
&=\sum_{n=0}^{\infty} \frac{-1}{n+1} \quad \text { negative harmonic } \\
& \text { series which }
\end{aligned}
$$ diverges.

So

$$
\ln (4+x)=\ln 4+\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n+1}}{4^{n+1}(n+1)} \text { for }-4<x \leq 4
$$

Approximation Using a Power Series
Use the first two nonzero terms of a power series for $\frac{1}{1+x^{3}}$ to approximate the integral

$$
\left.\begin{array}{rl}
\int_{0}^{0.1} \frac{d x}{1+x^{3}} \quad \frac{1}{1+x^{3}} & =\frac{1}{1-\left(-x^{3}\right)}
\end{array}=\sum_{n=0}^{\infty}\left(-x^{3}\right)^{n}\right)
$$

$$
\int_{0}^{0.1} \frac{1}{1+x^{3}} d x \approx \int_{0}^{0.1}\left(1-x^{3}\right) d x
$$

$$
\begin{aligned}
& =x-\left.\frac{x^{4}}{4}\right|_{0} ^{0.1} \\
& =0.1-\frac{1}{4}(0.1)^{4}=0.1-0.25(0.0001) \\
& =0.1-0.000025 \\
& =0.099975
\end{aligned}
$$

Exercise
Find a power series representation for $\frac{x}{2 x^{2}+1}$. What is the interval of convergence?

$$
\begin{array}{rlr}
f(x) & =\frac{x}{2 x^{2}+1}=\frac{x}{1-\left(-2 x^{2}\right)} \\
& =x \sum_{n=0}^{\infty}\left(-2 x^{2}\right)^{n} & \left|-2 x^{2}\right|<1 \\
& =\sum_{n=0}^{\infty}(-1)^{n} 2^{n} x^{2 n+1} & |x|^{2}<\frac{1}{2} \\
& |x|<\frac{1}{\sqrt{2}}
\end{array}
$$

The Interval is

$$
\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)
$$

Find a power series for $\int \frac{\ln (1+x)}{x} d x$ for $0<x<1$.

$$
\begin{aligned}
\ln (1+x) & =\int \frac{d x}{1+x}=C+\int \sum_{n=0}^{\infty}(-1)^{n} x^{n} \\
& =C+\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1} \ln (1)=C=0 \\
\int \frac{\ln (1+x)}{x} d x & =\int \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1} d x}{(n+1) x}=\int \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{n+1} d x \\
& =C+\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n+1}}{(n+1)^{2}}
\end{aligned}
$$

