April 17 Math 3260 sec. 55 Spring 2018

Section 5.1: Eigenvectors and Eigenvalues

Definition: Let A be an $n \times n$ matrix. A nonzero vector \mathbf{x} such that

$$
A \mathbf{x}=\lambda \mathbf{x}
$$

for some scalar λ is called an eigenvector of the matrix A.
A scalar λ such that there exists a nonzero vector \mathbf{x} satisfying $A \mathbf{x}=\lambda \mathbf{x}$ is called an eigenvalue of the matrix A. Such a nonzero vector \mathbf{x} is an eigenvector corresponding to λ.

Note that built right into this definition is that the eigenvector \mathbf{x} must be nonzero!

Eigenspace

Definition: Let A be an $n \times n$ matrix and λ and eigenvalue of A. The set of all eigenvectors corresponding to λ together with the zero vector-i.e. the set

$$
\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \text { and } A \mathbf{x}=\lambda \mathbf{x}\right\}
$$

is called the eigenspace of A corresponding to λ.

Remark: The eigenspace is the same as the null space of the matrix $A-\lambda I$. It follows that the eigenspace is a subspace of \mathbb{R}^{n}.

Matrices with Nice Structure

Theorem: If A is an $n \times n$ triangular matrix, then the eigenvalues of A are its diagonal elements.

Find the eigenvalues of the matrix $A=\left[\begin{array}{ccc}3 & 0 & 0 \\ -2 & \pi & 0 \\ -1 & 0 & 1\end{array}\right]$
The eigenvalues one $\lambda_{1}=3, \lambda_{2}=\pi, \lambda_{3}=1$

Example
Suppose $\lambda=0$ is an eigenvalue ${ }^{1}$ of a matrix A. Argue that A is not invertible.

Since $\lambda=0$ is an eifer value, there is a nonzero \vec{x} such that $A \vec{x}=0 \vec{x}$. That is, there is a nontrivid solution to the homogeneous equation $A \vec{x}=\overrightarrow{0}$.
This implies that A is singular -ie. doesn't have an inverse.
${ }^{1}$ Eigenvectors must be nonzero vectors, but it is perfectly legitimate to have a zero eigenvalue!

Theorems

Theorem: A square matrix A is invertible if and only if zero is not and eigenvalue.

Theorem: If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ are eigenvectors of a matrix A corresponding to distinct eigenvalues, $\lambda_{1}, \ldots, \lambda_{r}$, then the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is linearly independent.

Linear Independence
Show that if \mathbf{v}_{1} and \mathbf{v}_{2} are eigenvectors of a matrix A with corresponding eigenvalues λ_{1} and λ_{2} where $\lambda_{1} \neq \lambda_{2}$, then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is linearly independent.

Suppose $c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}=\overrightarrow{0}$ for some c_{1}, c_{2}.
Let's create two equations from this:
(1) Multi. $b_{y} \lambda_{1}: c_{1} \lambda_{1} \vec{v}_{1}+c_{2} \lambda_{1} \vec{v}_{2}=\overrightarrow{0} \quad *$
(2) Multi, by $A: A\left(c_{1} \vec{V}_{1}+c_{2} \vec{V}_{2}\right)=A \overrightarrow{0}$

$$
\begin{aligned}
& c_{1} A \vec{v}_{1}+c_{2} A \vec{v}_{2}=\overrightarrow{0} \\
& c_{1} \lambda_{1} \vec{v}_{1}+c_{2} \lambda_{2} \vec{v}_{2}=\overrightarrow{0} \quad * *
\end{aligned}
$$

Now, subtract * from *

$$
\begin{aligned}
c_{1} \lambda_{1} \vec{V}_{1}+c_{2} \lambda_{1} \vec{V}_{2} & =0 \\
-\left(c_{1} \lambda_{1} \vec{V}_{1}+c_{2} \lambda_{2} \vec{V}_{2}\right. & =\overrightarrow{0}) \\
\hline c_{2} \lambda_{1} \vec{V}_{2}-c_{2} \lambda_{2} \vec{V}_{2} & =\overrightarrow{0} \\
c_{2}\left(\lambda_{1}-\lambda_{2}\right) \vec{V}_{2} & =\overrightarrow{0}
\end{aligned}
$$

$\vec{V}_{2} \neq \overrightarrow{0}$ since its an eigenvector.

$$
\lambda_{1}-\lambda_{2} \neq 0 \quad \sin 6 \quad \lambda_{1} \neq \lambda_{2}
$$

Hence $c_{2}=0$ necessarily.

Going back to the equation $C_{1} \vec{V}_{1}+C_{2} \vec{V}_{2}=\overrightarrow{0}$, $\sin 6 \quad c_{2}=0, \quad c_{1} \vec{v}_{1}=\overrightarrow{0}$.

Since $\vec{V}_{1} \neq \overrightarrow{0}$ (as an eigenvector), $c_{1}=0$. Hence $\left\{\vec{V}_{1}, \vec{V}_{2}\right\}$ is linearly, independent.

Section 5.2: The Characteristic Equation
Find the eigenvalues of $A=\left[\begin{array}{cc}2 & 3 \\ 3 & -6\end{array}\right]$ by appealing to the fact that the equation $A \mathbf{x}=\lambda l_{2} \mathbf{x}$ can be restated as:

Find a nontrivial solution of the homogeneous equation

$$
\begin{gathered}
\left(A-\lambda I_{2}\right) \mathbf{x}=\mathbf{0} . \\
A \vec{x}=\lambda \vec{x}=\lambda I \vec{x} \Rightarrow A \vec{x}-\lambda I \vec{x}=(A-\lambda I) \vec{x}=\overrightarrow{0}
\end{gathered}
$$

To have a nontrivid solution, we require
$A-\lambda I$ to be singular. This requires $\operatorname{det}(A-\lambda I)=0$.

$$
\begin{aligned}
A-\lambda I & =\left[\begin{array}{cc}
2 & 3 \\
3 & -6
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
2-\lambda & 3 \\
3 & -6-\lambda
\end{array}\right] \\
\operatorname{det}(A-\lambda I) & =\operatorname{dt}\left(\left[\begin{array}{cc}
2-\lambda & 3 \\
3 & -6-\lambda
\end{array}\right]\right) \\
& =(2-\lambda)(-6-\lambda)-3(3) \\
& =\left(\lambda^{2}+4 \lambda-12\right)-9 \\
& =\lambda^{2}+4 \lambda-21
\end{aligned}
$$

$A-\lambda I$ is singuler if $\lambda^{2}+4 \lambda-21=0$

Solving

$$
\begin{aligned}
& \lambda^{2}+4 \lambda-21=0 \\
& (\lambda+7)(\lambda-3)=0 \\
& \Rightarrow \lambda=-7 \text { or } \lambda=3
\end{aligned}
$$

These are the two eisen values of A.

Theorem (adding more to the invertible matrix theorem)

The $n \times n$ matrix A is invertible if and only if^{2}
(s) The number 0 is not an eigenvalue of A.
(t) The determinant of A is nonzero.

$$
\begin{aligned}
& \text { inant of } A \text { is nonzero. } \\
& \text { Notu if } \lambda=0 \text { is an eigenvalue, then }
\end{aligned}
$$

$$
\text { for that } \lambda, A-\lambda I=A-O I=A \text {. }
$$

${ }^{2}$ This is nothing new, we're just adding to the list.

Characteristic Equation

Definition: For $n \times n$ matrix A, the expression

$$
\operatorname{det}(A-\lambda I)
$$

is an $n^{\text {th }}$ degree polynomial in λ. It is called the characteristic polynomial of A.

Definition:The equation

$$
\operatorname{det}(A-\lambda I)=0
$$

is called the characteristic equation of A.
Theorem: The scalar λ is an eigenvalue of the matrix A if and only if it is a root of the characteristic equation.

Example
Find the characteristic equation for the matrix and identify all of its

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
5 & -2 & 6 & -1 \\
0 & 3 & -8 & 0 \\
0 & 0 & 5 & 4 \\
0 & 0 & 0 & 1
\end{array}\right] \quad A-\lambda I=\left[\begin{array}{cccc}
5-\lambda & -2 & 6 & -1 \\
0 & 3-\lambda & -8 & 0 \\
0 & 0 & 5-\lambda & 4 \\
0 & 0 & 0 & 1-\lambda
\end{array}\right] \\
& \operatorname{dit}(A-\lambda I)=(5-\lambda)(3-\lambda)(5-\lambda)(1-\lambda) \\
&=(5-\lambda)^{2}(3-\lambda)(1-\lambda)
\end{aligned}
$$

This is the characteristic polynomid.

The characteristic equation is

$$
(s-\lambda)^{2}(3-\lambda)(1-\lambda)=0
$$

with roots $\lambda_{1}=5, \lambda_{2}=3, \lambda_{3}=1$

Multiplicities

Definition: The algebraic multiplicity of an eigenvalue is its multiplicity as a root of the characteristic equation. The geometric multiplicity is the dimension of its corresponding eigenspace.

Example Find the algebraic and geometric multiplicity of the eigenvalue $\lambda=5$ of

The char. poly is
$A=\left[\begin{array}{cccc}5 & -2 & 6 & -1 \\ 0 & 3 & -8 & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1\end{array}\right]$
$(5-\lambda)^{2}(3-\lambda)(1-\lambda)$
so the algebraic multi. is

To find the geometric multiplicity, we need to find
a basis for the eigen space. This is the null space of A-SI

$$
\begin{aligned}
& A-S I=\left[\begin{array}{cccc}
0 & -2 & 6 & -1 \\
0 & -2 & -9 & 0 \\
0 & 0 & 0 & 4 \\
0 & 0 & 0 & -4
\end{array}\right] \\
& \text { ref } \rightarrow\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \begin{array}{l}
x_{2}=0 \\
x_{3}=0 \\
x_{4}=0 \\
x_{1}-\text { free }
\end{array}
\end{aligned}
$$

The eigen rectors an $\vec{x}=x_{1}\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]$.
A basis for the eigen space is

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]\right\}
$$

The dimension is 1 , so the geometric multiplicity of $\lambda=5$ is 1 .

