April 18 Math 1190 sec. 62 Spring 2017

Section 4.1: Related Rates

Motivating Example: A spherical balloon is being filled with air. Suppose that we know that the radius is increasing in time at a constant rate of $2 \mathrm{~mm} / \mathrm{sec}$. Can we determine the rate at which the surface area of the balloon is increasing at the moment that the radius is 10 cm ?

Figure: Spherical Balloon

Surface area changes as radius changes

Figure: As a balloon inflates, the radius, surface area, and volume all change with time. Time is independent. Surface area depends on radius which in turn depends on time. $S=S(r)=S(r(t))$

Example Continued...
Suppose that the radius r and surface area $S=4 \pi r^{2}$ of a sphere are differentiable functions of time. Write an equation that relates

$$
\frac{d S}{d t} \text { to } \frac{d r}{d t}
$$

The chain rule says $\frac{d S}{d t}=\frac{d S}{d r} \frac{d r}{d t}$

$$
\text { From } \quad S=4 \pi r^{2}, \quad \frac{d S}{d r}=4 \pi(2 r)=8 \pi r
$$

So $\frac{d S}{d t}=8 \pi r \frac{d r}{d t}$
This is implicit differentiation, finding $\frac{d}{d t}$ of $S=4 \pi \sigma^{2}$.

Given this result, find the rate at which the surface area is changing when the radius is 10 cm .

We hove $\frac{d s}{d t}=8 \pi r \frac{d r}{d t}$. We were also given $\frac{d r}{d t}=2 \mathrm{~mm} / \mathrm{sec}$.
Since $r=10 \mathrm{~cm}$ at the moment of interest, let's convert that to $r=100 \mathrm{~mm}$.
when $r=100 \mathrm{~mm}, \quad \frac{d S}{d t}=8 \pi(100 \mathrm{~mm}) \cdot 2 \frac{\mathrm{mn}}{\mathrm{sec}}=1600 \pi \frac{\mathrm{~mm}^{2}}{\mathrm{sec}}$.

The surface area is increasing at a rate of

$$
1600 \pi \frac{\mathrm{~mm}^{2}}{\mathrm{sec}}
$$

Example
A right circular cone of height h and base radius r has volume

$$
V=\frac{\pi}{3} r^{2} h .
$$

(a) Find $\frac{d V}{d t}$ in terms of $\frac{d h}{d t}$ if r is constant.

Again, the chain rule says

$$
\begin{aligned}
& \frac{d V}{d t}=\frac{d V}{d h} \cdot \frac{d h}{d t} \quad \text { Since } r: s \text { assumed } \\
& \left.\frac{d V}{c h}=\frac{\pi}{3} r^{2} \cdot 1=\frac{\pi}{3} r^{2}\right\} \Rightarrow \frac{d v}{d t}=\frac{\pi}{3} r^{2} \frac{d h}{d t}
\end{aligned}
$$

Example Continued...

$$
V=\frac{\pi}{3} r^{2} h
$$

Question (b) Find $\frac{d V}{d t}$ in terms of $\frac{d r}{d t}$ if h is constant.
(a) $\frac{d V}{d t}=\frac{2 \pi}{3} r \frac{d r}{d t}$

$$
\frac{d V}{d t}=\frac{d V}{d r} \frac{d r}{d t}, \frac{d V}{d r}=\frac{\pi}{3} h(2 r)
$$

(b) $\frac{d V}{d t}=\frac{\pi}{3} r^{2} \frac{d r}{d t}$
(c) $\frac{d V}{d t}=\frac{\pi}{3} r^{2} h \frac{d r}{d t}$
(d)) $\frac{d V}{d t}=\frac{2 \pi}{3} r h \frac{d r}{d t}$

And Continued Further...

$$
V=\frac{\pi}{3} r^{2} h
$$

(c) Find $\frac{d V}{d t}$ in terms of $\frac{d h}{d t}$ and $\frac{d r}{d t}$ assuming neither r nor h is constant.
$r^{2} h$ is a product \Rightarrow we need the product ruble

$$
\begin{array}{ll}
\frac{d V}{d t}=\frac{d V}{d r} \cdot \frac{d r}{d t}+\frac{d V}{d h} \cdot \frac{d h}{d t} & \frac{d V}{d r}=\frac{2 \pi}{3} r h \text { and } \\
\frac{d V}{d h}=\frac{\pi}{3} r^{2} \text { from } \\
\frac{d V}{d t}=\frac{2 \pi}{3} r h \frac{d r}{d t}+\frac{\pi}{3} r^{2} \frac{d h}{d t} & \text { before }
\end{array}
$$

Example
A 13 foot ladder rests against a wall. The base of the ladder begins to slide along the ground. At the moment when the base of the ladder is 5 feet from the wall, it is sliding at a rate of 1 inch per second. At what rate is the top of the ladder sliding down the wall at the moment when the base is 5 feet from the wall?

We reed variables to represent changing
 quantities. Lat's let x be the distance between the ladder base and the wall, And y be the distance from the lade top to the ground. x and y in feet. given $\frac{d x}{d t}=1 \frac{\mathrm{in}}{\sec }$

Oas question: What is $\frac{d y}{d t}$ when $x=5 \mathrm{ft}$?

we have a right triangle.

$$
x^{2}+y^{2}=13^{2}
$$

we con "relate the rates":
Implicit diff: $\frac{d}{d t}\left(x^{2}+y^{2}\right)=\frac{d}{d t}\left(13^{2}\right)$

$$
2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=0
$$

Lats solve for $\frac{d y}{d t}$: $\quad 2 y \frac{d y}{d t}=-2 x \frac{d x}{d t}$

$$
\frac{d y}{d t}=\frac{-2 x}{2 y} \frac{d x}{d t}=\frac{-x}{y} \frac{d x}{d t}
$$

We need to know y when $x=s f t$.

$$
x^{2}+y^{2}=13^{2} \Rightarrow \quad y^{2}=\beta^{2}-x^{2}
$$

when $x=S f, y^{2}=(13 f t)^{2}-(s t)^{2}=(165-25) \mathrm{ft}^{2}$

$$
y^{2}=144 \mathrm{ft}
$$

$$
y=12 \mathrm{ft} \text { when } x=5 \mathrm{ft}
$$

Conurting $\frac{d x}{d t}$, $\frac{d x}{d t}=1 \frac{\text { in }}{\sec } \cdot \frac{1 \mathrm{ft}}{12 \mathrm{in}}=\frac{1}{12} \frac{\mathrm{ft}}{\mathrm{sec}}$.

$$
\begin{array}{r}
\frac{d y}{d t}=\frac{-x}{y} \frac{d x}{d t}, \text { when } x=s f t, y=12 \mathrm{ft} \\
\text { and } \frac{d x}{d t}=\frac{1}{12} \frac{\mathrm{ft}}{\mathrm{sec} .}
\end{array}
$$

So when $x=s f t$

$$
\frac{d y}{d t}=\frac{-5 f t}{12 f t} \cdot \frac{1}{12} \frac{f t}{\sec }=\frac{-5}{144} \frac{f t}{\sec }
$$

The ladder tip is falling at a rote of $\frac{5}{144} \frac{\mathrm{ft}}{\mathrm{sec}}$.

General Approach to Solving Related Rates Prob.

- Identifty known and unknown quantities and assign variables.
- Create a diagram if possible.
- Use the diagram, physical science, and mathematics to connect known quantities to those being sought.
- Relate the rates of change using implicit differentiation.
- Substitute in known quantities and solve for desired quantities.

Example
A reservoir in the shape of an inverted right circular cone has height 10 m and base radius 6 m . If water is flowing into the reservoir at a constant rate of $50 \mathrm{~m}^{3} / \mathrm{min}$. What is the rate at which the height of the water is increasing when the height is 5 m ?

c $50 \mathrm{~m}^{3} / \mathrm{min}$
At any sieve time, there is a smaller cone of waste inside the resecvoir. Let r and h be the radius and height of the water in meters.
$50 \frac{\mathrm{~m}^{3}}{\mathrm{~min}}$ is a volume rate.

From geometry, $V=\frac{\pi}{3} r^{2} h$. Also

$$
\frac{d V}{d t}=50 \frac{\mathrm{~m}^{3}}{\mathrm{~min}}
$$

Our question is: What is $\frac{d h}{d t}$ when $h=S_{m}$?
we can use similar triangles to eliminate r.

$$
\begin{aligned}
\frac{r}{n} & =\frac{6 m}{10 m}=\frac{3}{5} \\
& \Rightarrow r=\frac{3}{5} h
\end{aligned}
$$

April 14, $2017 \quad 14 / 55$

So

$$
\begin{aligned}
V=\frac{\pi}{3} r^{2} h & =\frac{\pi}{3}\left(\frac{3}{5} h\right)^{2} h=\frac{\pi}{3}\left(\frac{9}{25} h^{2}\right) h \\
V & =\frac{3 \pi}{25} h^{3}
\end{aligned}
$$

Differentiate:

$$
\begin{aligned}
& \frac{d V}{d t}=\frac{3 \pi}{2 s}\left(3 h^{2}\right) \cdot \frac{d h}{d t} \\
& \frac{d V}{d t}=\frac{9 \pi}{2 s} h^{2} \frac{d h}{d t}
\end{aligned}
$$

$$
\frac{d h}{d t}=\frac{25}{9 \pi} \frac{1}{h^{2}} \frac{d V}{d t}
$$

When $h=S_{m} \quad \frac{d h}{d t}=\frac{25}{9 \pi} \frac{1}{\left(S_{m}\right)^{2}} \cdot 50 \frac{m^{3}}{\mathrm{~min}}$

$$
\begin{aligned}
& =\frac{25}{9 \pi\left(25 \mathrm{~m}^{2}\right)} 50 \frac{\mathrm{~m}^{3}}{\mathrm{~min}} \\
& =\frac{50}{9 \pi} \frac{\mathrm{~m}}{\mathrm{~min}}
\end{aligned}
$$

The height is increasing at a rate of $\frac{50}{9 \cdot \pi} \mathrm{~m} / \mathrm{min}$.

