April 18 Math 1190 sec. 63 Spring 2017 Section 4.1: Related Rates

Motivating Example: A spherical balloon is being filled with air. Suppose that we know that the radius is increasing in time at a constant rate of 2 mm/sec. Can we determine the rate at which the surface area of the balloon is increasing at the moment that the radius is 10 cm?

Figure: Spherical Balloon

Surface area changes as radius changes

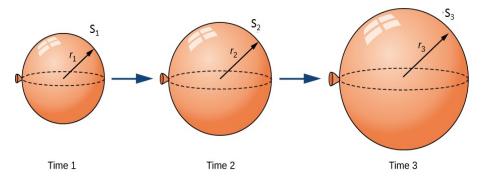


Figure: As a balloon inflates, the radius, surface area, and volume all change with time. Time is independent. Surface area depends on radius which in turn depends on time. S = S(r) = S(r(t))

Example Continued...

Suppose that the radius *r* and surface area $S = 4\pi r^2$ of a sphere are differentiable functions of time. Write an equation that relates

$$\frac{dS}{dt} \text{ to } \frac{dr}{dt}.$$
By the choin rule $\frac{dS}{dt} = \frac{dS}{dr} \frac{dr}{dt}.$
From $S = 4\pi r^2$, $\frac{dS}{dr} = 4\pi (2r) = 8\pi r$
So $\frac{dS}{dt} = 8\pi r \frac{dr}{dt}$

* This result is dotained from $S = 4\pi r^2$ using implicit
different introm toking $\frac{d}{dt}$ of both sides. *

April 14, 2017 3 / 55

イロト イポト イヨト イヨト

Given this result, find the rate at which the surface area is changing when the radius is 10 cm.

We have
$$\frac{dS}{dt} = 8\pi r \frac{dr}{dt}$$
 and $\frac{dr}{dt} = 2 \frac{mm}{sec}$.
We can convert 10 cm to 100 mm.
When $r = 100 \text{ mm}$, $\frac{dS}{dt} = 8\pi (100 \text{ mm}) \cdot 2 \frac{mm}{sec}$
 $= 1600 \pi \frac{mm^2}{sec}$

at this monent, the surface area is increasing at a rate of 1600 m mm² per second.

April 14, 2017 4 / 55

Example

A right circular cone of height h and base radius r has volume

$$V=rac{\pi}{3}r^2h.$$

(a) Find $\frac{dV}{dt}$ in terms of $\frac{dh}{dt}$ if r is constant. By the choin rule, $\frac{dV}{dt} = \frac{dV}{dh} \cdot \frac{dh}{dt}$ For constant, $\frac{dV}{dh} = \frac{\pi}{3}r^{2} \cdot 1$ So $\frac{dV}{dt} = \frac{\pi}{3}r^{2} \frac{dh}{dt}$

Example Continued...

$$V = \frac{\pi}{3}r^2h$$

Question (b) Find $\frac{dV}{dt}$ in terms of $\frac{dr}{dt}$ if *h* is constant.

(a)
$$\frac{dV}{dt} = \frac{2\pi}{3}r\frac{dr}{dt}$$

(b) $\frac{dV}{dt} = \frac{\pi}{3}r^2\frac{dr}{dt}$
(c) $\frac{dV}{dt} = \frac{\pi}{3}r^2h\frac{dr}{dt}$
(d) $\frac{dV}{dt} = \frac{2\pi}{3}rh\frac{dr}{dt}$

April 14, 2017 6 / 55

• • • • • • • • • • • •

And Continued Further...

$$V=\frac{\pi}{3}r^2h$$

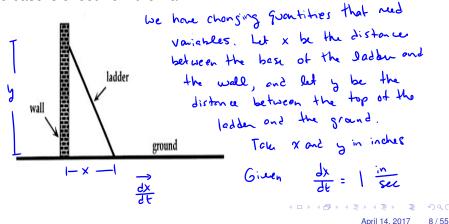
(c) Find $\frac{dV}{dt}$ in terms of $\frac{dh}{dt}$ and $\frac{dr}{dt}$ assuming neither *r* nor *h* is constant. $r^{2}h$ is a product \Rightarrow we read the product rule.

 $\frac{dV}{dV} = \frac{2}{2} \frac{1}{2} \frac{1}{2}$

< □ > < □ > < 亘 > < 亘 > < 亘 > < 亘 > < ⊙ < ⊙

Example

A 13 foot ladder rests against a wall. The base of the ladder begins to slide along the ground. At the moment when the base of the ladder is 5 feet from the wall, it is sliding at a rate of 1 inch per second. At what rate is the top of the ladder sliding down the wall at the moment when the base is 5 feet from the wall?



Our question: What is
$$\frac{dy}{dt}$$
 when $X = 60$ inches?
X and y are the legs of a right
 X and y are the legs of a right
 $13ft$ triangle 30
 $X^2 + y^2 = 15b^2$
 X us implied differentiation find $\frac{d}{dt}$
 $\frac{d}{dt}(x^2 + y^2) = \frac{d}{dt}15b^2$
 $2x \frac{dx}{dt} + 2y \frac{dy}{dt} = 0$
Solving for $\frac{dy}{dt}$

୬ < ୧୦ 9 / 55

$$2y \frac{dy}{dt} = -2x \frac{dx}{dt} \implies \frac{dy}{dt} = \frac{-2x}{2y} \frac{dx}{dt}$$
$$\frac{dy}{dt} = \frac{-x}{y} \frac{dx}{dt}$$
$$(be need by when $X = SFt = 60 \text{ in}$
$$X^{2} + y^{2} = (13ft)^{2} \implies y^{2} = 13^{2}ft^{2} - 5^{2}ft^{2} = 144 ft^{2}$$$$

y=12 ft = 144 in when x= 60 m

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ かへで April 14, 2017 10 / 55

$$\frac{dy}{dt} = \frac{-x}{y} \frac{dx}{dt}, \quad \text{given } \frac{dx}{dt} = 1 \frac{\text{in}}{\text{sec}}$$

When $x = 60$ in, $y = 144$ in ond

$$\frac{dy}{dt} = -\frac{60}{174} \frac{v}{v} + \frac{v}{sec} = -\frac{5}{12} \frac{v}{sec}$$

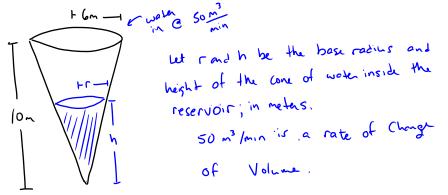
At that moment, the top of the ladde is
Slideng down at a rate of
$$\frac{5}{12}$$
 in percec.

General Approach to Solving Related Rates Prob.

- Identifty known and unknown quantities and assign variables.
- Create a diagram if possible.
- Use the diagram, physical science, and mathematics to connect known quantities to those being sought.
- **Relate the rates** of change using implicit differentiation.
- Substitute in known quantities and solve for desired quantities.

Example

A reservoir in the shape of an inverted right circular cone has height 10m and base radius 6m. If water is flowing into the reservoir at a constant rate of 50m³/min. What is the rate at which the height of the water is increasing when the height is 5m?



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If V is the Volume of water, then $\frac{dV}{dt} = 50 \frac{m^3}{min}$ and $V = \frac{T}{3}r^2h$ Our question: What is dt when h= Sm? We need to characterize rin terms of h. This is done using similar triangles. +6m-1 $\frac{\Gamma}{h} = \frac{6n}{10h} = \frac{3}{5} \Rightarrow \Gamma = \frac{3}{5}h$

April 14, 2017 14 / 55

So
$$V = \frac{\pi}{3}r^{2}h = \frac{\pi}{3}\left(\frac{3}{5}h\right)^{2}h = \frac{\pi}{3}\frac{9}{25}h^{2}\cdot h$$

 $V = \frac{3\pi}{25}h^{3}$
Implicite differ:
 $\frac{dV}{dt} = \frac{3\pi}{25}\left(3h^{2}\right)\frac{dh}{dt} = \frac{9\pi h^{2}}{25}\frac{dh}{dt}$
 $\Rightarrow \frac{25}{9\pi h^{2}}\frac{dV}{dt} = \frac{dh}{dt}$

When
$$h = Sm$$
,
 $\frac{dh}{dt} = \frac{2S}{9_{\text{ft}}(Sm)^2} \cdot 50 \frac{m^3}{m!n}$

$$\frac{dh}{dt} = \frac{25}{9\pi (25m^2)} \cdot 50 \frac{m^3}{n \cdot n}$$

$$=\frac{50}{9\pi}$$
 min

When
$$h=Sm$$
, it's increasing at a rate of $\frac{SO}{9\pi}$
meters per minute.

April 14, 2017 16 / 55

・ロト・西ト・モン・モー シック