April 19 Math 2306 sec. 60 Spring 2018

Section 18: Sine and Cosine Series

Functions with Symmetry

Recall some definitions:

Suppose f is defined on an interval containing x and $-x$.
If $f(-x)=f(x)$ for all x, then f is said to be even.
If $f(-x)=-f(x)$ for all x, then f is said to be odd.
For example, $f(x)=x^{n}$ is even if n is even and is odd if n is odd. The trigonometric function $g(x)=\cos x$ is even, and $h(x)=\sin x$ is odd.

Integrals on symmetric intervals

If f is an even function on $(-p, p)$, then

$$
\int_{-p}^{p} f(x) d x=2 \int_{0}^{p} f(x) d x
$$

If f is an odd function on $(-p, p)$, then

$$
\int_{-p}^{p} f(x) d x=0
$$

Products of Even and Odd functions

$$
\text { Even } \times \text { Even }=\text { Even, }
$$

and
Odd \times Odd $=$ Even.
While
Even \times Odd $=$ Odd.

So, suppose f is even on $(-p, p)$. This tells us that $f(x) \cos (n x)$ is even for all n and $f(x) \sin (n x)$ is odd for all n.

And, if f is odd on $(-p, p)$. This tells us that $f(x) \sin (n x)$ is even for all n and $f(x) \cos (n x)$ is odd for all n

Fourier Series of an Even Function

If f is even on $(-p, p)$, then the Fourier series of f has only constant and cosine terms. Moreover

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{p}\right)
$$

where
$a_{0}=\frac{2}{p} \int_{0}^{p} f(x) d x$
and
$a_{n}=\frac{2}{p} \int_{0}^{p} f(x) \cos \left(\frac{n \pi x}{p}\right) d x$.

Fourier Series of an Odd Function

If f is odd on $(-p, p)$, then the Fourier series of f has only sine terms. Moreover

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{p}\right)
$$

where
$b_{n}=\frac{2}{p} \int_{0}^{p} f(x) \sin \left(\frac{n \pi x}{p}\right) d x$.

Find the Fourier series of f

$$
f(x)= \begin{cases}x+\pi, & -\pi<x<0 \\ \pi-x, & 0 \leq x<\pi\end{cases}
$$

f has no sine terms

$$
\begin{aligned}
a_{0} & =\frac{2}{\pi} \int_{0}^{\pi} f(x) d x \\
& =\frac{2}{\pi} \int_{0}^{\pi}(\pi-x) d x=\frac{2}{\pi}\left[\pi x-\left.\frac{x^{2}}{2}\right|_{0} ^{\pi}=\frac{2}{\pi}\left(\pi^{2}-\frac{\pi}{2}\right)=\pi\right. \\
a_{n} & =\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos (n x) d x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2}{\pi} \int_{0}^{\pi}(\pi-x) \cos (n x) d x \\
& u=\pi-x \quad d u=-d x \\
& v=\frac{1}{n} \sin (n x) \quad d v=\cos (n x) d x \\
& =\frac{2}{\pi}\left[\left.\frac{\pi-x}{n} \sin (n x)\right|_{0} ^{\pi}+\frac{1}{n} \int_{0}^{\pi} \sin (n x) d x\right. \\
& =\frac{2}{\pi}\left[\left.\frac{-1}{n^{2}} \cos (n x)\right|_{0} ^{\pi}=\frac{-2}{n^{2} \pi}(\cos (n \pi)=0 \text { for all } n\right.
\end{aligned}
$$

$$
a_{n}=\frac{-2}{n^{2} \pi}\left((-1)^{n}-1\right)=\frac{2}{n^{2} \pi}\left(1-(-1)^{n}\right)
$$

so

$$
f(x)=\frac{\pi}{2}+\sum_{n=1}^{\infty} \frac{2\left(1-(-1)^{n}\right)}{n^{2} \pi} \cos (n x)
$$

Half Range Sine and Half Range Cosine Series

Suppose f is only defined for $0<x<p$. We can extend f to the left, to the interval $(-p, 0)$, as either an even function or as an odd function. Then we can express f with two distinct series:

Half range cosine series $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{p}\right)$
where $\quad a_{0}=\frac{2}{p} \int_{0}^{p} f(x) d x$ and $a_{n}=\frac{2}{p} \int_{0}^{p} f(x) \cos \left(\frac{n \pi x}{p}\right) d x$.

Half range sine series $f(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{p}\right)$
where $\quad b_{n}=\frac{2}{p} \int_{0}^{p} f(x) \sin \left(\frac{n \pi x}{p}\right) d x$.

Extending a Function to be Odd

Graph of Odd Extension of $f(x)$

Figure: $f(x)=p-x, 0<x<p$ together with its odd extension.

Extending a Function to be Even

Graph of Even Extension of $f(x)$

Figure: $f(x)=p-x, 0<x<p$ together with its even extension.

Find the Half Range Sine Series of f

$$
\begin{array}{rl}
f(x)=2-x, & 0<x<2 \\
p=2 \quad & \frac{n \pi x}{p}=\frac{n \pi x}{2} \\
b_{n}=\frac{2}{2} \int_{0}^{2} f(x) \sin \left(\frac{n \pi x}{2}\right) d x \\
=\int_{0}^{2}(2-x) \sin \left(\frac{n \pi x}{2}\right) d x \\
v=\frac{-2}{n \pi} \cos \left(\frac{n \pi x}{2}\right) \quad d u & =-d x \\
v & d v \sin \left(\frac{n \pi x}{2}\right) d x
\end{array}
$$

$$
\begin{aligned}
& =\left.\frac{-2}{n \pi}(2-x) \cos \left(\frac{n \pi x}{2}\right)\right|_{0} ^{2}-\frac{2}{n \pi} \int_{0}^{2} \cos \left(\frac{n \pi x}{2}\right) d x \\
& =\frac{-2}{n \pi}(2-2) \cos (n \pi)-\frac{-2}{n \pi}(2-0) \cos (0)-\left.\frac{4}{n^{2} \pi^{2}} \sin \left(\frac{n \pi x}{2}\right)\right|_{0} ^{2} \\
& =\frac{4}{n \pi} \\
& f(x)=\sum_{n=1}^{\infty} \frac{4}{n \pi} \sin \left(\frac{n \pi x}{2}\right)
\end{aligned}
$$

Weef range sine senies

Find the Half Range Cosine Series of f

$$
\begin{aligned}
& f(x)=2-x, \quad 0<x<2 \\
& a_{0}=\frac{2}{2} \int_{0}^{2} f(x) d x=\int_{0}^{2}(2-x) d x=2 x-\frac{x^{2}}{2}=4-2=2 \\
& a_{n}=\frac{2}{2} \int_{0}^{2} f(x) \cos \left(\frac{n \pi x}{2}\right) d x \\
& u=2-x \\
& v=\frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right)
\end{aligned} \quad d v=-d x \quad \cos \left(\frac{n \pi x}{2}\right) d x .
$$

$$
\begin{aligned}
& =\left.\frac{2}{n \pi}(2-x) \sin \left(\frac{n \pi x}{2}\right)\right|_{0} ^{2}+\frac{2}{n \pi} \int_{0}^{2} \sin \left(\frac{n \pi x}{2}\right) d x \\
& =\left.\frac{-4}{n^{2} \pi^{2}} \cos \left(\frac{n \pi x}{2}\right)\right|_{0} ^{2} \\
& =\frac{-4}{n^{2} \pi^{2}}(\cos (n \pi)-\cos (\theta)) \\
& =\frac{-4}{n^{2} \pi^{2}}\left((-1)^{n}-1\right)=\frac{4}{n^{2} \pi^{2}}\left(1-(-1)^{n}\right)
\end{aligned}
$$

The half range cosine series is

$$
f(x)=1+\sum_{n=1}^{\infty} \frac{4}{n^{2} \pi^{2}}\left(1-(-1)^{n}\right) \cos \left(\frac{n \pi x}{2}\right)
$$

Plots of f with Half range series

Figure: $f(x)=2-x, 0<x<2$ with 10 terms of the sine series.

Plots of f with Half range series

Figure: $f(x)=2-x, 0<x<2$ with 10 terms of the sine series, and the series plotted over $(-6,6)$

Plots of f with Half range series

Figure: $f(x)=2-x, 0<x<2$ with 5 terms of the cosine series.

Plots of f with Half range series

Figure: $f(x)=2-x, 0<x<2$ with 5 terms of the cosine series, and the series plotted over $(-6,6)$

