April 20 Math 2254H sec 015H Spring 2015
Section 11.10: Taylor and Maclaurin Series
Suppose $f$ has a power series representation for $|x-a|<R$. Try to determine a relationship between the coefficients $c_{n}$ and the values of $f$ and its derivatives as $x=a$.

$$
\begin{gathered}
f(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+c_{4}(x-a)^{4}+c_{5}(x-a)^{5}+\cdots \\
f(a)=c_{0}+c_{1} \cdot 0+c_{2} \cdot 0^{2}+\ldots \quad c_{0}=f(a)=\frac{f(a)}{0!} \\
f^{\prime}(x)=c_{1}+2 c_{2}(x-a)+3 c_{3}(x-a)^{2}+4 c_{4}(x-a)^{3}+5 c_{5}(x-a)^{4}+\ldots \\
f^{\prime}(a)=c_{1}+2 c_{2} \cdot 0+3 c_{3} \cdot 0^{2}+\ldots \Rightarrow c_{1}=f^{\prime}(a)=\frac{f^{\prime}(a)}{1!}
\end{gathered}
$$

$$
\begin{gathered}
f^{\prime \prime}(x)=2 c_{2}+3 \cdot 2 c_{3}(x-a)+4 \cdot 3 a_{4}(x-a)^{2}+5 \cdot 4 c_{6}(x-a)^{3}+\ldots \\
f^{\prime \prime}(a)=2 c_{2}+3 \cdot 2 \cdot c_{3} \cdot 0+\ldots \\
\\
\Longrightarrow c_{2}=\frac{f^{\prime \prime}(a)}{2}=\frac{f^{\prime \prime}(a)}{1 \cdot 2}=\frac{f^{\prime \prime}(a)}{2!} \\
f^{\prime \prime \prime}(x)=3 \cdot 2 c_{3}+4 \cdot 3 \cdot 2 c_{4}(x-a)+5 \cdot 4 \cdot 3 c_{5}(x-a)^{2}+\ldots \\
f^{\prime \prime \prime}(a) \\
=3 \cdot 2 c_{3} \\
\Rightarrow c_{3}=\frac{f^{\prime \prime \prime}(a)}{2 \cdot 3}=\frac{f^{\prime \prime \prime}(a)}{3!}
\end{gathered}
$$

In gerace, $c_{n}=\frac{f^{(n)}(a)}{n!}$

## Theorem

Theorem: If $f$ has a power series representation (a.k.a. expansion) centered at $a$,

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}, \quad \text { for } \quad|x-a|<R
$$

then the coefficients are given by the formula

$$
c_{n}=\frac{f^{(n)}(a)}{n!}
$$

Remark This notation makes use of the traditional convention that the zeroth derivative of $f$ is $f$ itself. That is,

$$
\frac{f^{(0)}(a)}{0!}=f(a)=c_{0}
$$

## The Taylor Series

Definition: If $f$ has a power series representation centered at $a$, we can write it as

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& =f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\cdots
\end{aligned}
$$

This is called the Taylor series of $f$ centered at $a$ (or at $a$ or about $a$ ).
Definition: If $a=0$, the series is called the Maclaurin series of $f$. In this case, the series above appears as

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots
$$

Example
Determine the Maclaurin series for $f(x)=e^{x}$. Find its radius of convergence.

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}
$$

$$
\begin{array}{cc}
f(x)=e^{x} & f(0)=e^{0}=1 \\
f^{\prime}(x)=e^{x} & f^{\prime}(0)=e^{0}=1 \\
f^{\prime \prime}(x)=e^{x} & \vdots \\
\vdots & \vdots \\
f^{(n)}(x)=e^{x} & f^{(n)}(0)=1
\end{array}
$$

So $e^{x}=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}$

$$
=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

Radius of Convergence Ratio test: $a_{n}=\frac{x^{n}}{n!}$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^{n}}\right| \\
&=\lim _{n \rightarrow \infty}\left|\frac{x n!}{n!(n+1)}\right| \\
&=\lim _{n \rightarrow \infty} \frac{|x|}{n+1}=0
\end{aligned}
$$

$$
L=0<1
$$

for ald red $x$

The series converge absolutely, for all red $x$.

The radius of convergence $R=\infty$.

## $e^{x}$ Approximated by terms in its Maclaurin Series



Figure: Plot of $f$ along with the first 2,3 , and 4 terms of the Maclaurin series.

## Taylor Polynomials

Definition: Suppose $f$ is at least $n$ times differentiable at $x=a$. The $n^{\text {th }}$ degree Taylor Polynomial of $f$ centered at a, denoted by $T_{n}$, is defined by

$$
\begin{aligned}
T_{n}(x) & =\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k} \\
& =f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n} .
\end{aligned}
$$

Remark: Note that if $f$ has a Taylor series centered at a, then the Taylor polynomials are what you get if you just take a finite number of terms, and discard the rest.

Remark: A Taylor series is like a polynomial of infinite degree, but a Taylor polynomial will have a well defined finite degree.

Example
Write out the first four Taylor polynomials of $f(x)=e^{x}$ centered at zero.
Recall $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$

$$
\begin{array}{ll}
T_{0}(x)=1 & T_{3}(x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!} \\
T_{1}(x)=1+x \\
T_{2}(x)=1+x+\frac{x^{2}}{2!} &
\end{array}
$$

Example
Find the Taylor polynomial of degree $n=4$ centered at $a=1$ for

$$
\begin{array}{ll}
g(x)=e^{3 x} \\
T_{4}(x)=\frac{g(1)}{0!}+\frac{g^{\prime}(1)}{1!}(x-1)+\frac{g^{\prime \prime}(1)}{2!}(x-1)^{2}+\frac{g^{\prime \prime \prime}(11}{3!}(x-1)^{3}+\frac{g^{(4)}(1)}{4!}(x-1)^{4} \\
g(x)=e^{3 x} & g(1)=e^{3} \\
g^{\prime}(x)=3 e^{3 x} & g^{\prime}(1)=3 e^{3} \\
g^{\prime \prime}(x)=3^{2} e^{3 x} & g^{\prime \prime}(1)=9 e^{3} \\
g^{\prime \prime \prime}(x)=3^{3} e^{3 x} & g^{\prime \prime \prime}(1)=27 e^{3} \\
g^{(4)}(x)=3^{4} e^{3 x} & g^{(4)}(1)=81 e^{3}
\end{array}
$$

$$
T_{4}(x)=\frac{e^{3}}{a!}+\frac{3 e^{3}}{1!}(x-1)+\frac{9 e^{3}}{2!}(x-1)^{2}+\frac{27 e^{3}}{3!}(x-1)^{3}+\frac{81 e^{3}}{4!}(x-1)^{4}
$$

$$
T_{4}(x)=e^{3}+3 e^{3}(x-1)+\frac{9}{2} e^{3}(x-1)^{2}+\frac{9}{2} e^{3}(x-1)^{3}+\frac{27}{8} e^{3}(x-1)^{4}
$$

## Well Known Series and Results

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad \text { for all real } x
$$

A consequence of this is:

$$
e=\sum_{n=0}^{\infty} \frac{1}{n!}=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots
$$

And with the radius of convergence being infinite, the following limit is useful:

$$
\lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=0 \quad \text { for every real number } x
$$

Maclaurin Series for $\sin x$
Derive the Maclaurin series of $f(x)=\sin x$. Find its radius of convergence.

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}
$$

$$
\begin{array}{lll}
f(x)=\sin x & f(0)=0 & f^{(1)}(0) \\
f^{\prime}(x)=\cos x & f^{\prime}(0)=1 & \text { is one of } \\
f^{\prime \prime}(x)=-\sin x & f^{\prime \prime}(0)=0 & 0,1 \text {, or }-1 . \\
f^{\prime \prime \prime}(x)=-\cos x & f^{\prime \prime \prime}(0)=-1 & \\
f^{(4)}(x)=\sin x & f^{(4)}(0)=0 &
\end{array}
$$

$$
\begin{aligned}
\sin x & =0+\frac{1}{1!} x+\frac{0}{2!} x^{2}+\frac{-1}{3!} x^{3}+\frac{0}{4!} x^{4}+\frac{1}{5!} x^{5}+\frac{0}{6!} x^{6}+\frac{-1}{7!} x^{7}+\ldots \\
& =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots
\end{aligned}
$$

Need factor of $(-1)^{n}$ or $(-1)^{n-1}$ and a formal a to pick up odd powers.

If $n=0,1,2, \ldots$
taking power $2 n+1$ gives powers $1,3,5, \ldots$

$$
\sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}
$$

Radius of Convergence: Ratio test $a_{n}=\frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{0 n}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1} x^{2 n+3}}{(2 n+3)!} \cdot \frac{(2 n+1)!}{(-1)^{n} x^{2 n+1}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{x^{2}(2 n+1)!}{(2 n+1)!(2 n+2)(2 n+3)}\right|
\end{aligned}
$$

$$
=\lim _{n \rightarrow \infty} \frac{x^{2}}{(2 n+2)(2 n+3)}=0 \quad L=0<1
$$

The rodius $R=\infty$; the seies convenges for all recl $x$.

