April 20 Math 2254H sec 015H Spring 2015

Section 11.10: Taylor and Maclaurin Series

Suppose f has a power series representation for |x — a] < R. Try to

determine a relationship between the coefficients ¢, and the values of
f and its derivatives as x = a.
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Theorem

Theorem: If f has a power series representation (a.k.a. expansion)
centered at a,

f(x)=> ca(x—a)", for |x—a <R,
n=0

then the coefficients are given by the formula

f(”)(a)
Cn == n' .

Remark This notation makes use of the traditional convention that the
zeroth derivative of f is f itself. That is,

(0)
' ofa) = f(a) = co.
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The Taylor Series

Definition: If f has a power series representation centered at a, we
can write it as

> f(n)
i) = 2@ ap

n=0

f”(a)
2!

f/l/(a)
3!

This is called the Taylor series of f centered at a (or at a or about a).

(x —a)®+ (x—a)P+---

(x —a)+

Definition: If a = 0, the series is called the Maclaurin series of f. In
this case, the series above appears as

f(x) = i f(n;(lo)x” = f(0) + f/1((|))x + fﬂz(?)xz +
n=0 ' ' '

0 April 14,2015 5/33



Example
Determine the Maclaurin series for f(x) = e*. Find its radius of

convergence. » ()
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e* Approximated by terms in its Maclaurin Series
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Figure: Plot of f along with the first 2, 3, and 4 terms of the Maclaurin series.
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Taylor Polynomials

Definition: Suppose f is at least n times differentiable at x = a. The
n'" degree Taylor Polynomial of f centered at a, denoted by T, is
defined by

Tn(X) _ Zn: f(k)(a)(x_ a)k

k!
k=0

f'(a)
11

f(”)(a)
n!

f//(a)
2!

= f(a)+ (x —a) + (x—a)?+ -+ (x —a)".
Remark: Note that if f has a Taylor series centered at a, then the
Taylor polynomials are what you get if you just take a finite number of

terms, and discard the rest.

Remark: A Taylor series is like a polynomial of infinite degree, but a
Taylor polynomial will have a well defined finite degree.
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Example
Write out the first four Taylor polynomials of f(x) = e* centered at zero.
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Example

Find the Taylor polynomial of degree n = 4 centered at a = 1 for

9(x) = e*.
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Well Known Series and Results

Xn

=) — forallreal x
n
n=0
A consequence of this is:
=1 1 1 1
e:Z%n!:1+1!+2!+3!+---

n=

And with the radius of convergence being infinite, the following limit is
useful:

e
lim — = 0 for every real number x

n—oo N
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Maclaurin Series for sin x

Derive the Maclaurin series of f(x) = sin x. Find its radius of
convergence.
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