April 21 Math 2254H sec 015H Spring 2015

Section 11.10: Taylor and Maclaurin Series
Definition: If f has a power series representation centered at a, we can write it as

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& =f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\cdots
\end{aligned}
$$

This is called the Taylor series of f centered at a (or at a or about a).
Definition: If $a=0$, the series is called the Maclaurin series of f. In this case, the series above appears as

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots
$$

Taylor Polynomials

Definition: Suppose f is at least n times differentiable at $x=a$. The $n^{\text {th }}$ degree Taylor Polynomial of f centered at a, denoted by T_{n}, is defined by

$$
\begin{aligned}
T_{n}(x) & =\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k} \\
& =f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n} .
\end{aligned}
$$

Maclaurin Series for $\sin x$

Derive the Maclaurin series of $f(x)=\sin x$. Find its radius of convergence.

We found that

$$
\sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}
$$

which is convergent for all real x.

Maclaurin Series for $\cos x$
Use the fact that $\cos x=\frac{d}{d x} \sin x$.

$$
\begin{aligned}
\text { fact that } \cos x & =\frac{a}{d x} \sin x . \\
\operatorname{Cos} x & =\frac{d}{d x} \sin x=\frac{d}{d x} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!} \\
& =\sum_{n=0}^{\infty}\left[\frac{(-1)^{n}}{(2 n+1)!} \frac{d}{d x} x^{2 n+1}\right] \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}(2 n+1) x^{2 n} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}(2 n+1) x^{2 n}}{(2 n)!(2 n+1)}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} \text { for ed }{ }^{2 n} \text { red } x \\
\cos x & =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)^{2}!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots
\end{aligned}
$$

Well Known Series and Results

$$
\begin{aligned}
\frac{1}{1-x} & =\sum_{n=0}^{\infty} x^{n}, \quad|x|<1 \\
e^{x} & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!}, \quad \text { for all } x \\
\sin x & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}, \quad \text { for all } x \\
\cos x & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}, \quad \text { for all } x \\
\ln (1+x) & =\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}, \quad-1<x \leq 1 \\
\tan ^{-1} x & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}, \quad-1 \leqslant x \leq 1
\end{aligned}
$$

Compositions, Products and Quotients

If we stay well within the radius of convergence, we can form compositions, products and quotients with Taylor and Maclaurin series.
Example: Find a Maclaurin series for $f(x)=e^{-x^{2}} . \quad e^{t}=\sum_{n=0}^{\infty} \frac{t^{n}}{n!}$

$$
\text { Set } \begin{aligned}
t & =-x^{2} \\
e^{-x^{2}} & =\sum_{n=0}^{\infty} \frac{\left(-x^{2}\right)^{n}}{n!} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{n!}
\end{aligned}
$$

Compositions, Products and Quotients
Example:
Find a Maclaurin series representation for the indefinite integral. $\int \sin x^{2} d x \quad \sin t=\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{2 n+1}}{(2 n+1)!}$ for ale real t

$$
\begin{aligned}
& \sin x^{2}=\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(x^{2}\right)^{2 n+1}}{(2 n+1)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{4 n+2}}{(2 n+1)!} \\
& \int \sin x^{2} d x=\int\left(\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{4 n+2}}{(2 n+1)!}\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& =C+\sum_{n=0}^{\infty}\left[\frac{(-1)^{n}}{(2 n+1)!} \int x^{4 n+2} d x\right] \\
& =C+\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1))^{n}} \frac{x^{4 n+3}}{4 n+3} \\
\int \sin x^{2} d x & =C+\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{4 n+3}}{(2 n+1)!(4 n+3)}
\end{aligned}
$$

Compositions, Products and Quotients
Example:
Use the Maclaurin series for e^{x} to find a Taylor series for $f(x)=e^{x}$ centered at $a=-1$.

$$
\begin{aligned}
e^{x} & =e^{x+1-1} \\
& =e^{-1} \cdot e^{x+1} \\
& =e^{-1} \sum_{n=0}^{\infty} \frac{(x+1)^{n}}{n!} \\
& =\sum_{n=0}^{\infty} \frac{(x+1)^{n}}{e n!}
\end{aligned}
$$

$$
e^{t}=\sum_{n=0}^{\infty} \frac{t^{n}}{n^{\prime}} \text { all } \begin{gathered}
\text { for } \\
t
\end{gathered}
$$

Theorem: The Binomial Series

Theorem: For k any real number and $|x|<1$

$$
(1+x)^{k}=1+k x+\frac{k(k-1)}{2!} x^{2}+\frac{k(k-1)(k-2)}{3!} x^{3}+\cdots=\sum_{n=0}^{\infty}\binom{k}{n} x^{n}
$$

Here $\binom{k}{n}$ is read as k choose n. If is defined by

$$
\binom{k}{n}=\frac{k(k-1)(k-2) \cdots(k-n+1)}{n!}
$$

If k is a positive integer, this has the traditional meaning

$$
\binom{k}{n}=\frac{k!}{(k-n)!n!}
$$

Example
Use the Binomial series to find the Taylor polynomial of degree 3 centered at zero for

$$
\begin{aligned}
& \text { centered at zero for } \\
& f(x)=\frac{1}{\sqrt[3]{1+x}}=(1+x)^{\frac{-1}{3}} \quad k=\frac{-1}{3} \\
& T_{3}(x)=1+k x+\frac{k(k-1)}{2!} x^{2}+\frac{k(k-1)(k-2)}{3!} x^{3} \\
& k(k-1)=\frac{-1}{3}\left(-\frac{1}{3}-1\right)=\frac{-1}{3}\left(\frac{-4}{3}\right)=\frac{4}{9} \\
& k(k-1)(k-2)=\frac{4}{9}\left(-\frac{1}{3}-2\right)=\frac{4}{9} \cdot\left(-\frac{7}{3}\right)=\frac{-28}{27}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{4}{9} \cdot \frac{1}{2!}=\frac{2}{9}, \frac{-28}{27} \cdot \frac{1}{3!}=\frac{-28}{27 \cdot 2 \cdot 3}=\frac{-14}{81} \\
& T_{3}(x)=1-\frac{1}{3} x+\frac{2}{9} x^{2}-\frac{14}{81} x^{3}
\end{aligned}
$$

One More Example
Suppose we have the Taylor series for a function $f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}(x-3)^{n}}{2^{n}(n+2)}$.
Use this to evaluate the following derivative of f :

$$
\begin{aligned}
& C_{5}=\frac{f^{(5)}(3)}{5!} \Rightarrow f^{(5)}(3)=5!c_{5} \\
& c_{5}=\frac{(-1)^{5}}{2^{5}(5+2)}=\frac{-1}{32 \cdot 7} \\
& f_{n}^{(5)}(3)=5!\left(\frac{-1}{32 \cdot 7}\right)=\frac{-1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}{32 \cdot 7}=\frac{-15}{56}
\end{aligned}
$$

Section 11.11: Applications of Taylor Polynomials

Recall: The Taylor polynomial of degree n centered at a shares the value of f at a and has the same first n derivative values as f does at the center. Hence T_{n} approximates the function f-typically, the higher the value of n, and closer we stay to the center, the better the approximation is.

We can exploit the nice nature of polynomials if f itself is somehow difficult to manage!

Example
Approximate the value of $\sqrt[3]{9}$ by using an appropriate Taylor polynomial of degree 2.

Let $f(x)=\sqrt[3]{x}$. Choose a center "close" to 9 such that $f, f^{\prime}, f^{\prime \prime}$ are

Let $a=8$ "easy to evaluate.

$$
f(x) \approx T_{2}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}
$$

for $x \approx a$

$$
\begin{array}{rl}
f(x)=x^{1 / 3} & f(8)=2 \\
f^{\prime}(x)=\frac{1}{3} x^{-2 / 3} & f^{\prime}(8)=\frac{1}{3 \cdot 4}=\frac{1}{12} \\
f^{\prime \prime}(x)=\frac{-2}{9} x^{-5 / 3} & f^{\prime \prime}(8)=\frac{-2}{9 \cdot 32}=\frac{-1}{144} \\
T_{2}(x)=2+\frac{1}{12}(x-8)-\frac{1}{288}(x-8)^{2} \\
\sqrt[3]{9} \approx T_{2}(9) & =2+\frac{1}{12}(9-8)-\frac{1}{288}(9-8)^{2} \\
& =\frac{576+24-1}{288}=\frac{599}{288}
\end{array}
$$

Graph of f and T_{2} Approximation

Figure: $f(x)=\sqrt[3]{x}$ together with the second degree Taylor polynomial near the point being approximated.

