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Section 5.4: Numerical Differentiation

If we have a scheme to approximate the first derivative f ′(x), we’re
using the notation

f ′(x) ≈ Dhf (x), for step size h.

If we want to approximate f ′′(x), we’ll use a superscript with
parentheses

f ′′(x) ≈ D(2)
h f (x) for step size h.

For an nth derivative, we write

f (n)(x) ≈ D(n)
h f (x) for step size h.
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Some First Derivative Rules Forward, Backward, and
Central Difference

For h > 0 we have the names:

Forward Difference: Dhf (x) =
f (x + h)− f (x)

h

Backward Difference: Dhf (x) =
f (x)− f (x − h)

h

Central Difference: Dhf (x) =
f (x + h)− f (x − h)

2h

April 20, 2016 2 / 70



Errors: Order of a Rule

Defintion: If the error for a particular rule satisfies

Err = Chp, for some constants C and p,

we will say that the rule is of order p.

I The forward and backward difference rules are order p = 1.
I The central difference rule is order p = 2.

We confirmed both of these using Taylor’s theorem.

April 20, 2016 3 / 70



The Method Undetermined Coefficients

The use of Taylor series expansions can help us to define new
numerical differentiation rules as well as analyze the error for a rule.

The Method of Undetermined Coefficients involves setting up a
form the rule is to take, and then finding out what coefficients are
needed.
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The Method Undetermined Coefficients an Example

Suppose we wish to approximate a second derivative

f ′′(x) ≈ D(2)
h f (x).

We begin by deciding how many points to use, such as x , x + h, and
x − h (or x + 2h etc.), then write out a general form.

D(2)
h f (x) = Af (x + h) + Bf (x) + Cf (x − h)

Then, we determine the values of the unknown coefficients A, B, and
C using Taylor series.
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A Second Derivative Rule
We sought a rule to approximate f ′′(x) using three points x , x + h and
x − h of the form

D(2)f (x) = Af (x + h) + Bf (x) + Cf (x − h).

Writing out the Taylor expansions for Af (x + h) and Cf (x − h) we
arrived at three equations for our three unknowns

A + B + C = 0
hA − hC = 0
h2

2 A + h2

2 C = 1

with solution A = C = 1
h2 and B = −2

h2 . This gives the rule

D(2)
h f (x) =

f (x + h)− 2f (x) + f (x − h)
h2
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Determine the Order of The Method Just Found

D(2)
h f (x) =

f (x + h)− 2f (x) + f (x − h)
h2

From the previous computations, since A = C = 1/h2

A
h3

6
f ′′′(x)− C

h3

6
f ′′′(x) = 0.

So we can use the Taylor expansions up to degree 3 with error:

1
h2 f (x + h) =

1
h2

(
f (x) + hf ′(x) +

h2

2
f ′′(x) +

h3

6
f ′′′(x) +

h4

24
f (4)(c1)

)
1
h2 f (x − h) =

1
h2

(
f (x)− hf ′(x) +

h2

2
f ′′(x)− h3

6
f ′′′(x) +

h4

24
f (4)(c2)

)
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Section 6.1: Systems of Linear Equations

Definition: A linear equation in n variables x1, . . . , xn is one of the
form

a1x1 + a2x2 + · · ·+ anxn = b.

Here, a1, . . . ,an are known constants called the coefficients, and b is
a known constant.

Examples:
2x1 + 3x2 − x3 = 7

or
x − 2y = 12
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System of Linear Equations

A system of linear equations is two or more linear equations in the
same variables—the equations are considered together.

For example:
3x + 2y = 9
x − 5y = −14

or

x1 + 2x2 − x3 = 0
2x1 + 2x2 + x3 = 3
x1 + 2x3 = 3
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Solution
A system of linear equations may have solutions. A solution is an
n-tuple of numbers that satisfies all equation in the system
simultaneously.

Example: Show that (x , y) = (1,3) is a solution, and show that
(x , y) = (3,0) is not a solution of the system

3x + 2y = 9
x − 5y = −14
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Matrices

Definition: A matrix is a rectangular array of numbers. It’s size (a.k.a.
dimension/order) is m × n (read ”m by n”) where m is the number of
rows and n is the number of columns the matrix has.

Examples:  2 0 −1 3
1 1 13 −4

12 −3 2 −2

 ,

 2 0
4 4
3 −5
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General System and Matrix Formalism
A system of n equations in n variables has the form

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
...

an1x1 + an2x2 + · · · + annxn = bn

We can equate two matrices with this system of equations, a
coefficient matrix and an augmented matrix.

a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...
...

am1 am2 · · · amn

 ,


a11 a12 · · · a1n b1
a21 a22 · · · a2n b2

...
...

...
...

am1 am2 · · · amn bn

 .

The system is called homogeneous if b1 = b2 = . . . = bn = 0.
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Example Source of a Linear System
Find a linear system for the following problem and write the coefficient
and augmented matrices.

Find a quadratic polynomial p(x) = ax2 + bx + c through the points
(0,2), (1,3), and (2,10).
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Another Example: Cubic Spline

Suppose we have hj = 1. The equations for the cubic spline numbers
Mj were

Mj−1

6
+

2Mj

3
+

Mj+1

6
= yj+1 − 2yj + yj−1, j = 2, . . . ,n − 1.

Multiply both sides by 6, and let bj−1 = 6(yj+1 − 2yj + yj−1).
Then all equations can be written as

M1 + 4M2 + M3 + · · · = b1
M2 + 4M3 + M4 + · · · = b2

M3 + 4M4 + M5 + · · · = b3
...

...
Mn−2 + 4Mn−1 + Mn = bn−2
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Coefficent Matrix for Cubic Spline Equations 1

1This structure is called tri-diagonal.
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Theorem

Theorem For a linear system of equations, exactly one of the following
is true.

I The system has exactly one solution (x1, . . . , xn).
I The system has no solution.
I The system has infinitely many solutions.

A homogeneous system (all right hand sides are zero) always has at
least one solution

x1 = x2 = . . . = xn = 0

called the trivial solution.
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Solving a System: Gaussian Elimination

Definition: Two systems are equivalent if they have the same solution
set.

For example, the following are equivalent:

3x + 2y = 9
x − 5y = −14

, and
3x + 2y = 9

y = 3
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Solving a System: Gaussian Elimination

We can try to solve a system by obtaining a convenient form for an
equivalent system using an augmented matrix. We are allowed to
perform three row operations.

The following Row Operations result in an equivalent system:

i Swap any two rows.

ii Multiply a row by any nonzero number

iii Add a nonzero multiple of one row to another row and replace one
of these rows with the result.
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Example (a): Gaussian Elimination w/ Back
Substitution

x1 + 2x2 + x3 = 0
2x1 + 2x2 + 3x3 = 3
−x1 − 3x2 = 2
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Triangular Matrix

The matrix

 1 2 1
0 −2 1
0 0 1

2

 is called upper triangular. A matrix with

only zero entries above the main diagonal is called lower triangular.

 u11 u12 u13
0 u22 u23
0 0 u33

  `11 0 0
`21 `22 0
`31 `32 `33
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Section 6.3: Gaussian Elimination: The Process

We begin with the system

a11x1 + a12x2 + a13x3 = b1
a21x1 + a22x2 + a23x3 = b2
a31x1 + a32x2 + a33x3 = b3

whose augmented matrix is a11 a12 a13 b1
a21 a22 a23 b2
a31 a32 a33 b3
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Gaussian Elimination: The Process

 a11 a12 a13 b1
a21 a22 a23 b2
a31 a32 a33 b3


We introduce the multipliers

m21 =
a21

a11
and m31 =

a31

a11

and perform the row operations R2 −m21R1 and R3 −m31R1 to get
new rows 2 and 3. ((2) means second generation.) a11 a12 a13 b1

0 a(2)
22 a(2)

23 b(2)
2

0 a(2)
32 a(2)

33 b(2)
3
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Gaussian Elimination: The Process
 a11 a12 a13 b1

0 a(2)
22 a(2)

23 b(2)
2

0 a(2)
32 a(2)

33 b(2)
3


Then we form another multiplier

m32 =
a(2)

32

a(2)
22

and perform R3 −m32R2 for a new row 3 a11 a12 a13 b1

0 a(2)
22 a(2)

23 b(2)
2

0 0 a(3)
33 b(3)

3
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Gaussian Elimination: The Process

This leaves the augmented matrix for the equivalent system

 a11 a12 a13 b1

0 a(2)
22 a(2)

23 b(2)
2

0 0 a(3)
33 b(3)

3

 =

 u11 u12 u13 g1
0 u22 u23 g2
0 0 u33 g3



which can be solved using back substitution.
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Gaussian Elimination: The Process

Word of Caution: We’ve assumed that the numbers we divide by are
nonzero! Trouble can occur if one of them is zero or even just close to
zero.

We can side step the possible problem this causes by using pivoting.

April 20, 2016 37 / 70



Error: An Example

Consider solving the following system using a four digit computer.

6x1 + 2x2 + 6x3 = −2
x1 + 1

3x2 + 1x3 = 1
x1 + 2x2 − x3 = 0

The exact solution is x1 = −1.6, x2 = 1.8, x3 = 2.0.

The augmented matrix in our computer is 6.000 2.000 2.000 −2.000
1.000 .3333 1.000 1.000
1.000 2.000 −1.000 0.000


with m21 = 0.1667 and m31 = 0.1667.
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Error: An Example
The second generation in our computer is 6.000 2.000 2.000 −2.000

0 −.0001 .6667 1.333
0 1.667 −1.333 .3333

 .

The new multiplier is (much larger than the numbers we’re working
with)

m32 =
1.667
−.0001

= 16670.

The numerical solution we end up with is

x1 = 3.444, x2 = −15.33, x3 = 3.998

which isn’t even close!
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Pivoting
A solution is to use swapping of rows called pivoting. At each step,
look at all possible values for the denominator in our multipliers.
Choose the largest one.
For example:  6.000 2.000 2.000 −2.000

1.000 .3333 1.000 1.000
1.000 2.000 −1.000 0.000


The three possible denominators are 6, 1 and 1. Choose 6. 6.000 2.000 2.000 −2.000

0 −.0001 .6667 1.333
0 1.667 −1.333 .3333

 .

The two possible denominators are −.0001 and 1.667. Choose 1.667,
so swap rows 2 and 3 before proceding.
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Operation Count

To solve the linear system of n equations Ax = b by Gaussian
elimination with back substitution, we had two general processes:

A −→ U, and b −→ g −→ x

We can count the number of multiplications, additions, subtractions,
divisions involved (# of operations):

A −→ U :
4n3 + 9n2 − 7n

6
operations

b −→ g −→ x : 2n2 operations
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Operation Count
For example: If A is 5× 5, it takes

115 + 50 = 165 operations

If A is 10× 10, it takes

805 + 200 = 1005 operations

Suppose we wish to solve the system Ax = bk for k = 1,2, . . . ,N. If

A is 10× 10, and N = 25

total # of operations = 25,125
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Operation Count

If we can do A −→ U only once, and b −→ g −→ x 25 times, then the
total number of operations drops to

5805 (about 1/4 as many).
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Section 6.4: LU Decomposition

Suppose we wish to solve the linear system Ax = b, and we happen to
know that

A = LU

where L is lower triangular, and U is upper triangular.

LUx = b ⇐⇒ Lg = b and Ux = g
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Example

We wish to solve the system

2x1 − x2 + 3x3 = 12
4x1 − x2 + 6x3 = 23
−2x1 + 2x2 − 5x3 = −19

A =

 2 −1 3
4 −1 6
−2 2 −5


And we know that

A =

 1 0 0
2 1 0
−1 1 1

 2 −1 3
0 1 0
0 0 −2



Solve Lg = b and then Ux = g where b =

 12
23
−19

.
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Lg = b  1 0 0
2 1 0
−1 1 1

 g1
g2
g3

 =

 12
23
−19
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Ux = g  2 −1 3
0 1 0
0 0 −2

 x1
x2
x3

 =

 12
−1
−6
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The LU Factorization

Let A be an n × n matrix, and suppose that we can do Gaussian
elimination with A without any pivoting.

That is, we are able to form the necessary multipliers mij without
swapping any rows.

Then we can write A as the product A = LU where

U =


u11 u12 · · · u1n
0 u22 · · · u2n
...

. . . . . .
...

0 · · · 0 u1n

 and L =


1 0 · · · 0

m21 1 · · · 0
...

. . . . . .
...

mn1 · · · mn n−1 1
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