April 21 Math 2335 sec 51 Spring 2016

Section 5.4: Numerical Differentiation

If we have a scheme to approximate the first derivative f'(x), we're using the notation

 $f'(x) \approx D_h f(x)$, for step size h.

If we want to approximate f''(x), we'll use a superscript with parentheses

$$f''(x) \approx D_h^{(2)} f(x)$$
 for step size *h*.

For an *n*th derivative, we write

$$f^{(n)}(x) \approx D_h^{(n)} f(x)$$
 for step size *h*.

April 20, 2016

1/70

Some First Derivative Rules Forward, Backward, and Central Difference

For h > 0 we have the names:

Forward Difference:
$$D_h f(x) = \frac{f(x+h) - f(x)}{h}$$

Backward Difference:
$$D_h f(x) = \frac{f(x) - f(x - h)}{h}$$

Central Difference:
$$D_h f(x) = \frac{f(x+h) - f(x-h)}{2h}$$

April 20, 2016 2 / 70

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Errors: Order of a Rule

Definition: If the error for a particular rule satisfies

 $Err = Ch^{p}$, for some constants *C* and *p*,

we will say that the rule is of **order** *p*.

- The forward and backward difference rules are order p = 1.
- The central difference rule is order p = 2.

We confirmed both of these using Taylor's theorem.

The Method Undetermined Coefficients

The use of Taylor series expansions can help us to define new numerical differentiation rules as well as analyze the error for a rule.

The Method of Undetermined Coefficients involves setting up a form the rule is to take, and then finding out what coefficients are needed.

The Method Undetermined Coefficients an Example

Suppose we wish to approximate a second derivative

$$f''(x) \approx D_h^{(2)} f(x).$$

We begin by deciding how many points to use, such as x, x + h, and x - h (or x + 2h etc.), then write out a general form.

$$D_h^{(2)}f(x) = Af(x+h) + Bf(x) + Cf(x-h)$$

Then, we determine the values of the unknown coefficients A, B, and C using Taylor series.

April 20, 2016

5/70

A Second Derivative Rule

We sought a rule to approximate f''(x) using three points x, x + h and x - h of the form

$$D^{(2)}f(x) = Af(x+h) + Bf(x) + Cf(x-h).$$

Writing out the Taylor expansions for Af(x + h) and Cf(x - h) we arrived at three equations for our three unknowns

with solution $A = C = \frac{1}{h^2}$ and $B = \frac{-2}{h^2}$. This gives the rule

$$D_h^{(2)}f(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

Determine the Order of The Method Just Found

$$D_h^{(2)}f(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

From the previous computations, since $A = C = 1/h^2$

$$A\frac{h^3}{6}f'''(x) - C\frac{h^3}{6}f'''(x) = 0.$$

So we can use the Taylor expansions up to degree 3 with error:

$$\frac{1}{h^2}f(x+h) = \frac{1}{h^2}\left(f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{6}f'''(x) + \frac{h^4}{24}f^{(4)}(c_1)\right)$$
$$\frac{1}{h^2}f(x-h) = \frac{1}{h^2}\left(f(x) - hf'(x) + \frac{h^2}{2}f''(x) - \frac{h^3}{6}f'''(x) + \frac{h^4}{24}f^{(4)}(c_2)\right)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Sum

$$\frac{1}{h^{2}}\left(f(x+h)+f(x-h)\right) = \frac{1}{h^{2}}\left(2f(x)+h^{2}f''(x)+\frac{h^{2}}{24}\left[f^{(u)}_{(c_{1})}+f^{(u)}_{(c_{2})}\right]\right)$$

$$= \frac{2}{h^2} f(x) + f''(x) + \frac{h^2}{2y} \left[f^{(u)}_{(c_1)} + f^{(u)}_{(c_2)} \right]$$

$$\Rightarrow \frac{1}{h^{2}} \left[f(x+h) + f(x-h) - 2f(x) \right] = f''(x) + \frac{h^{2}}{2u} \left[f_{(c,1)}^{(u)} + f_{(cn)}^{(u)} \right]$$

$$\frac{f(x+h) - 2f(x) + f(x-h)}{h^{2}} = f''(x) + (-c)h^{2}$$
where $-(z) = \frac{1}{2u} \left[f_{(c,1)}^{(u)} + f_{(cn)}^{(u)} \right]$

▲□▶ ▲圖▶ ▲ 볼▶ ▲ 볼 ▶ 볼 · 의 Q (~)
April 20, 2016 8 / 70

$$D_{h}^{(z)}f(x) = f''(x) - Ch^{2}$$

$$\Rightarrow f''(x) - D'_{h}f(x) = Ch'^{2}$$

$$\operatorname{Err}\left(\mathcal{D}_{h}^{(2)}f(x)\right)=\operatorname{Ch}^{2}$$

Our rule is on order 2 method,

April 20, 2016 9 / 70

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ ○ ○

Section 6.1: Systems of Linear Equations

Definition: A linear equation in *n* variables x_1, \ldots, x_n is one of the form

$$a_1x_1+a_2x_2+\cdots+a_nx_n=b.$$

Here, a_1, \ldots, a_n are known constants called the **coefficients**, and b is a known constant.

Examples:

$$2x_1 + 3x_2 - x_3 = 7$$

or

$$x - 2y = 12$$

April 20, 2016

12/70

System of Linear Equations

A **system of linear equations** is two or more linear equations in the same variables—the equations are considered together.

For example:

$$3x + 2y = 9$$

 $x - 5y = -14$

or

イロト イポト イヨト イヨト

April 20, 2016

13/70

Solution

A system of linear equations may have solutions. A **solution** is an *n*-tuple of numbers that satisfies all equation in the system simultaneously.

Example: Show that (x, y) = (1, 3) is a solution, and show that (x, y) = (3, 0) is **not** a solution of the system

$$3x + 2y = 9$$

 $x - 5y = -14$

イロト 不得 トイヨト イヨト ヨー ろくの

April 20, 2016 14 / 70

Check
$$(3,0)$$
 $3.3 - 2.0 = 9 - 0 = 9 \sqrt{}$

Matrices

Definition: A matrix is a rectangular array of numbers. It's **size** (a.k.a. dimension/order) is $m \times n$ (read "*m* by *n*") where *m* is the number of rows and *n* is the number of columns the matrix has.

Examples:

General System and Matrix Formalism

A system of *n* equations in *n* variables has the form

We can equate two matrices with this system of equations, a **coefficient matrix** and an **augmented matrix**.

 $\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_n \end{bmatrix}.$

The system is called **homogeneous** if $b_1 = b_2 = \ldots = b_n = 0$.

Example Source of a Linear System

Find a linear system for the following problem and write the coefficient and augmented matrices.

Find a quadratic polynomial $p(x) = ax^2 + bx + c$ through the points (0,2), (1,3), and (2,10).

$$P(0) = a \cdot 0^{2} + b \cdot 0 + c = 2 \qquad 0a + 0b + c = 2$$

$$P(1) = a \cdot 1^{2} + b \cdot 1 + c = 3 \qquad 1a + 1b + c = 3$$

$$P(2) = a \cdot 2^{2} + b \cdot 2 + c = 10 \qquad \forall a + 2b + c = 10$$

April 20, 2016

18/70

The augmented motive is
$$\begin{bmatrix}
0 & 0 & | & 2 \\
| & 1 & | & 3 \\
| & 2 & | & |0
\end{bmatrix}$$

▲ロト ◆ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆ ○ へ ○
April 20, 2016 19 / 70

Another Example: Cubic Spline

Suppose we have $h_j = 1$. The equations for the cubic spline numbers M_j were

$$\frac{M_{j-1}}{6} + \frac{2M_j}{3} + \frac{M_{j+1}}{6} = y_{j+1} - 2y_j + y_{j-1}, \quad j = 2, \ldots, n-1.$$

Multiply both sides by 6, and let $b_{j-1} = 6(y_{j+1} - 2y_j + y_{j-1})$. Then all equations can be written as

Coefficent Matrix for Cubic Spline Equations¹

$$\begin{bmatrix} 1 & 4 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 4 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 4 & 1 & 0 & \cdots & 0 \\ & & & \ddots & \ddots & & \\ & & & & \ddots & & \\ 0 & & & & & 0 & 1 & 4 & 1 \end{bmatrix}$$
A
tridiagonal
matrix

¹This structure is called *tri-diagonal*.

Theorem

Theorem For a linear system of equations, exactly one of the following is true.

- The system has exactly one solution (x_1, \ldots, x_n) .
- The system has no solution.
- The system has infinitely many solutions.

A homogeneous system (all right hand sides are zero) always has at least one solution

$$x_1 = x_2 = \ldots = x_n = 0$$

April 20, 2016

22/70

called the trivial solution.

Solving a System: Gaussian Elimination

Definition: Two systems are **equivalent** if they have the same solution set.

For example, the following are equivalent:

$$3x + 2y = 9$$

$$x - 5y = -14$$
, and
$$3x + 2y = 9$$

$$y = 3$$

Note that the solution to the system on
the right is fairly obvious.
From y=3, we get $3x = 9 - 2y = 9 - 2 \cdot 3 = 3$

$$s, x = 1$$

April 20, 2016 23/70

Solving a System: Gaussian Elimination

We can try to solve a system by obtaining a convenient form for an equivalent system using an augmented matrix. We are allowed to perform three **row operations**.

The following Row Operations result in an equivalent system:

- i Swap any two rows. Devoled Ri and Ry
- ii Multiply a row by any nonzero number $k R \rightarrow R'_{i}$
- iii Add a nonzero multiple of one row to another row and replace one of these rows with the result. $R_{j} k R_{c} \rightarrow R_{j}$

Example (a): Gaussian Elimination w/ Back Substitution

$$R_2 - ZR_1 \rightarrow R_2$$

$$R_3 - (-1)R_1 \rightarrow R_3$$

Scratch 2 2 3 3 -2 -4 -2 0 -1 -3 0 2 1 2 10

$$\begin{cases} 1 & 2 & 1 & 0 \\ 2 & 2 & 3 & 3 \\ -1 & -3 & 0 & 2 \\ \end{bmatrix}$$

$$\begin{cases} 1 & 2 & 1 & 0 \\ 0 & -2 & 1 & 3 \\ 0 & -1 & 1 & 2 \\ \end{cases}$$

< ロ > < 同 > < 回 > < 回 >

April 20, 2016 25 / 70

$$R_{3} - (\frac{1}{2})R_{2} \rightarrow R_{3}$$

$$\begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & -2 & 1 & 3 \\ 0 & 0 & 1/2 & 1/2 \end{bmatrix}$$

$$0 = 1 - \frac{1}{2} - \frac{3}{2}$$
The system for this Augmented metrix is equivalent. It is
$$X_{1} + 2X_{2} + X_{3} = 0$$

$$-2 \times 2 + X_{3} = 3$$

$$\frac{1}{2} \times 3 = \frac{1}{2}$$

April 20, 2016 26 / 70

・ロト・西ト・ヨト・ヨー つくぐ

$$\begin{array}{cccc} \chi_{3} = & & -2\chi_{2} = 3 - \chi_{3} \\ & & \chi_{2} = & \frac{\chi_{3} - 3}{2} = \frac{1 - 3}{2} = - \\ & & \chi_{1} = -2\chi_{2} - \chi_{3} = -2(-1) - 1 = 1 \\ & & \left(\chi_{1,3} \chi_{2,3} \chi_{3} \right) = \left(1, -1, 1 \right) \end{array}$$

April 20, 2016 27 / 70

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Triangular Matrix

The matrix
$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & -2 & 1 \\ 0 & 0 & \frac{1}{2} \end{bmatrix}$$
 is called **upper triangular**. A matrix with only zero entries *above* the main diagonal is called **lower triangular**.

$$\begin{bmatrix} U_{11} & U_{12} & U_{13} \\ 0 & U_{22} & U_{23} \\ 0 & 0 & U_{33} \end{bmatrix} \begin{bmatrix} \ell_{11} & 0 & 0 \\ \ell_{21} & \ell_{22} & 0 \\ \ell_{31} & \ell_{32} & \ell_{33} \end{bmatrix}$$
upper triangular Lower triangular

April 20, 2016 32 / 70

-2

ヘロト ヘロト ヘヨト ヘヨト

Section 6.3: Gaussian Elimination: The Process

We begin with the system

$a_{11}x_1$	+	$a_{12}x_{2}$	+	<i>a</i> ₁₃ <i>x</i> ₃	=	b_1
$a_{21}x_1$	+	$a_{22}x_{2}$	+	$a_{23}x_{3}$	=	b ₂
$a_{31}x_1$	+	$a_{32}x_{2}$	+	<i>a</i> ₃₃ <i>x</i> ₃	=	b ₃

whose augmented matrix is

$$\left[\begin{array}{ccccc} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ a_{31} & a_{32} & a_{33} & b_3 \end{array}\right]$$

April 20, 2016 33 / 70

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

[a ₁₁	a ₁₂	a 13	b_1
<i>a</i> ₂₁	<i>a</i> ₂₂	<i>a</i> ₂₃	<i>b</i> ₂
<i>a</i> ₃₁	<i>a</i> ₃₂	<i>a</i> ₃₃	<i>b</i> ₃

We introduce the multipliers

$$m_{21} = \frac{a_{21}}{a_{11}}$$
 and $m_{31} = \frac{a_{31}}{a_{11}}$

and perform the row operations $R_2 - m_{21}R_1$ and $R_3 - m_{31}R_1$ to get new rows 2 and 3. (⁽²⁾ means *second generation*.)

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ 0 & a_{22}^{(2)} & a_{23}^{(2)} & b_2^{(2)} \\ 0 & a_{32}^{(2)} & a_{33}^{(2)} & b_3^{(2)} \end{bmatrix}$$

イロト 不得 トイヨト イヨト 二日

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ 0 & a_{22}^{(2)} & a_{23}^{(2)} & b_2^{(2)} \\ 0 & a_{32}^{(2)} & a_{33}^{(2)} & b_3^{(2)} \end{bmatrix}$$

Then we form another multiplier

$$m_{32} = rac{a_{32}^{(2)}}{a_{22}^{(2)}}$$

and perform $R_3 - m_{32}R_2$ for a new row 3

$$\left[\begin{array}{cccc}a_{11}&a_{12}&a_{13}&b_{1}\\0&a_{22}^{(2)}&a_{23}^{(2)}&b_{2}^{(2)}\\0&0&a_{33}^{(3)}&b_{3}^{(3)}\end{array}\right]$$

토▶◀토▶ 토 ∽९९ April 20, 2016 35 / 70

イロト イポト イヨト イヨト

This leaves the augmented matrix for the equivalent system

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ 0 & a_{22}^{(2)} & a_{23}^{(2)} & b_2^{(2)} \\ 0 & 0 & a_{33}^{(3)} & b_3^{(3)} \end{bmatrix} = \begin{bmatrix} u_{11} & u_{12} & u_{13} & g_1 \\ 0 & u_{22} & u_{23} & g_2 \\ 0 & 0 & u_{33} & g_3 \end{bmatrix}$$

(a)

April 20, 2016

36 / 70

which can be solved using back substitution.

Word of Caution: We've assumed that the numbers we divide by are nonzero! Trouble can occur if one of them is zero or even just *close to* zero.

We can side step the possible problem this causes by using **pivoting**.

Error: An Example

Consider solving the following system using a four digit computer.

6 <i>x</i> 1	+	2 <i>x</i> ₂	+	6 <i>x</i> 3	=	-2
<i>x</i> ₁	+	$\frac{1}{3}X_{2}$	+	1 <i>x</i> ₃	=	1
		$\tilde{2}x_2$				

The exact solution is $x_1 = -1.6$, $x_2 = 1.8$, $x_3 = 2.0$.

The augmented matrix in our computer is

ſ	6.000	2.000	2.000	-2.000	1
	1.000	.3333	1.000	1.000	
	1.000	2.000	-1.000	-2.000 1.000 0.000	

with $m_{21} = 0.1667$ and $m_{31} = 0.1667$.

< □ > < □ > < 亘 > < 亘 > < 亘 > < 亘 > < ⊙ < ⊙

Error: An Example

The second generation in our computer is

Γ	6.000	2.000	2.000	-2.000	1
	0	0001	.6667	1.333	
L	0	1.667	-1.333	.3333	

The new multiplier is (much larger than the numbers we're working with)

$$m_{32}=\frac{1.667}{-.0001}=.16670.$$

The numerical solution we end up with is

$$x_1 = 3.444, \quad x_2 = -15.33, \quad x_3 = 3.998$$

which isn't even close!

April 20, 2016 39 / 70

イロト イポト イヨト イヨト

.

Pivoting

A solution is to use swapping of rows called **pivoting**. At each step, look at all possible values for the denominator in our multipliers. Choose the largest one.

For example:

Γ	6.000	2.000	2.000	-2.000	
	1.000	.3333	1.000	1.000 0.000	
	1.000	2.000	-1.000	0.000	

The three possible denominators are 6, 1 and 1. Choose 6.

Γ	6.000	2.000	2.000	-2.000	٦
	0	0001	.6667	1.333	
L	0	1.667	-1.333	.3333	

The two possible denominators are -.0001 and 1.667. Choose 1.667, so swap rows 2 and 3 before proceeding.

Operation Count

To solve the linear system of *n* equations $A\mathbf{x} = \mathbf{b}$ by Gaussian elimination with back substitution, we had two general processes:

$$A \longrightarrow U$$
, and $b \longrightarrow g \longrightarrow x$

We can count the number of multiplications, additions, subtractions, divisions involved (# of operations):

$$A \longrightarrow U: \quad rac{4n^3 + 9n^2 - 7n}{6} \quad ext{operations}$$

 $b \longrightarrow g \longrightarrow x: \quad 2n^2 \quad ext{operations}$

April 20, 2016 41 / 70

Operation Count

For example: If A is 5×5 , it takes

115 + 50 = 165 operations

If A is 10×10 , it takes

Suppose we wish to solve the system $A\mathbf{x} = \mathbf{b}_k$ for k = 1, 2, ..., N. If

A is 10×10 , and N = 25

total # of operations = 25, 125

April 20, 2016

42/70

Operation Count

If we can do $A \longrightarrow U$ only once, and $b \longrightarrow g \longrightarrow x$ 25 times, then the total number of operations drops to

5805 (about 1/4 as many).

イロト 不得 トイヨト イヨト 二日

Section 6.4: LU Decomposition

Suppose we wish to solve the linear system $A\mathbf{x} = \mathbf{b}$, and we happen to know that

A = LU

where L is lower triangular, and U is upper triangular.

$$LU\mathbf{x} = \mathbf{b} \iff L\mathbf{g} = \mathbf{b}$$
 and $U\mathbf{x} = \mathbf{g}$

・ロト・・日本・ モート・モーシーモーのへで
April 20, 2016 44 / 70

Example

We wish to solve the system

And we know that

A=LU

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

• • • • • • • • • • • •

April 20, 2016

45 / 70

Solve $L\mathbf{g} = \mathbf{b}$ and then $U\mathbf{x} = \mathbf{g}$ where $\mathbf{b} = \begin{vmatrix} 12 \\ 23 \\ -19 \end{vmatrix}$.

 $L\mathbf{g} = \mathbf{b}$

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} g_1 \\ g_2 \\ g_3 \end{bmatrix} = \begin{bmatrix} 12 \\ 23 \\ -19 \end{bmatrix}$$

$$g_1 = 12 \qquad 2g_1 + g_2 = 23 \qquad g_2 = 23 - 2g_1 = 23 - 24 = -1$$

$$= g_1 + g_2 + g_3 = -19 \qquad g_3 = -19 \qquad g_3 = -19 + g_1 - g_2 = -19 + 12 - (-1) = -6$$

$$= g_3 = -19 + g_1 - g_2 = -19 + 12 - (-1) = -6$$

$$= g_3 = -19 + g_1 - g_2 = -19 + 12 - (-1) = -6$$

April 20, 2016 46 / 70

・ロト・西ト・ヨト・ヨー つくぐ

 $U\mathbf{x} = \mathbf{g}$

$$\begin{array}{c} 2 & -1 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{array} \right] \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{array} \right] = \begin{bmatrix} 12 \\ -1 \\ -6 \end{bmatrix}$$

$$\begin{array}{c} -2x_3 = -6 \quad \Rightarrow \quad X_3 = 3 \\ X_2 + 0X_3 = -1 \quad \Rightarrow \quad X_2 = -1 \\ 2x_1 - x_2 + 3X_3 = 12 \\ X_1 = \frac{1}{2} \left(12 + X_2 - 3X_3 \right)^{-\frac{1}{2}} \left(12 - 1 - 9 \right) = 1$$

April 20, 2016 48 / 70

◆□> ◆◎> ◆注> ◆注> 二注:

$$x = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$$

The LU Factorization

Let *A* be an $n \times n$ matrix, and suppose that we can do Gaussian elimination with *A* without any pivoting.

That is, we are able to form the necessary multipliers m_{ij} without swapping any rows.

Then we can write *A* as the product A = LU where

$$U = \begin{bmatrix} u_{11} & u_{12} & \cdots & u_{1n} \\ 0 & u_{22} & \cdots & u_{2n} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & u_{1n} \end{bmatrix} \text{ and } L = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ m_{21} & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ m_{n1} & \cdots & m_{nn-1} & 1 \end{bmatrix}$$

April 20, 2016 50 / 70