April 21 Math 2254H sec 015H Spring 2015

Section 11.11: Applications of Taylor Polynomials

Observation: If $T_{n}(x)$ is the Taylor polynomial of degree n centered at a for the function $f(x)$, then

$$
T_{n}^{(k)}(a)=f^{(k)}(a), \quad \text { for each } \quad k=0,1, \ldots, n .
$$

That is, f and T_{n} have the same value and the same first n derivatives at the center a.

Example
Find the Taylor polynomial of degree 2 centered at $\frac{\pi}{2}$ for $f(x)=\sin x$. Use this to find an approximation to $\sin 80^{\circ}$

$$
\begin{aligned}
& T_{2}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{21}(x-a)^{2} \\
& f(x)=\sin x \quad f(\sigma / 2)=1 \\
& f^{\prime}(x)=\cos x \quad f^{\prime}(\pi / 2)=0 \\
& f^{\prime \prime}(x)=-\sin x \quad f^{\prime \prime}(\pi / 2)=-1 \\
& T_{2}(x)=1-\frac{1}{2}(x-\pi / 2)^{2} \\
& \text { For } x \approx \frac{\pi}{2}, \quad T_{2}(x) \approx f(x)
\end{aligned}
$$

$$
\begin{aligned}
& 80^{\circ}=\frac{80}{180} \pi=\frac{4 \pi}{9} \quad f\left(\frac{4 \pi}{9}\right) \approx T_{2}\left(\frac{4 \pi}{9}\right) \\
& \begin{aligned}
& \sin 80^{\circ} \approx T_{2}\left(\frac{4 \pi}{9}\right)=1-\frac{1}{2}\left(\frac{4 \pi}{9}-\frac{\pi}{2}\right)^{2} \\
&=1-\frac{1}{2}\left(\frac{-\pi}{18}\right)^{2} \\
&=1-\frac{1}{2}\left(\frac{\pi^{2}}{324}\right) \\
&=\frac{648-\pi^{2}}{648} \approx 0.985 \\
& 6 \gamma x^{5} \\
& \text { R土 }^{6} \sin 80^{\circ}=0.985 \text { to } 3 \text { dis.ts }
\end{aligned} .
\end{aligned}
$$

Graph of f and Polynomial Approximations

Figure: $f(x)=\sin x$ together with $T_{n}(n=0,2,4,6)$ centered at $\frac{\pi}{2}$.

Using Taylor Series to Compute Limits
Use the Maclaurin series for $\sin x$ to verify the well known limit

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \quad \sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!} \\
& \text { For } x \approx 0, x \neq 0 \quad \frac{\sin x}{x}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!x}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n+1)!} \\
& \frac{\sin x}{x}=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\frac{x^{6}}{7!}+\ldots \\
& \lim _{x \rightarrow 0} \frac{\sin x}{x}=\lim _{x \rightarrow 0}\left(1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\frac{x^{6}}{7!}+\ldots\right)=1
\end{aligned}
$$

Example
Use an appropriate Taylor series to evaluate the limit

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\cos x-1+\frac{x^{2}}{2}}{x^{4}} \quad \cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} \\
& \cos x-1+\frac{x^{2}}{2}=\left(1-\frac{x^{2}}{12!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}-\ldots\right)-1+\frac{x^{2}}{2} \\
&=\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}-\ldots \\
& \frac{\cos x-1+\frac{x^{2}}{2}}{x^{4}}=\frac{\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{0}}{8!}-\cdots}{x^{4}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{4!}-\frac{x^{2}}{6!}+\frac{x^{4}}{8!}-\ldots \\
\lim _{x \rightarrow 0} \frac{\cos x-1+\frac{x^{2}}{2}}{x^{4}} & =\lim _{x \rightarrow 0}\left(\frac{1}{4!}-\frac{x^{2}}{6!}+\frac{x^{4}}{8!}-\ldots\right) \\
& =\frac{1}{4!} \\
& =\frac{1}{24}
\end{aligned}
$$

Error in Taylor Polynomials

Theorem: (Taylor's Inequality) ${ }^{1}$ Suppose f is $n+1$ times continuously differentiable on an interval / containing the number a, and let $T_{n}(x)$ be the Taylor polynomial for f of degree n centered at a. Then for each x in I

$$
\left|f(x)-T_{n}(x)\right| \leq \frac{M|x-a|^{n+1}}{(n+1)!} \quad \text { where } \quad M=\max _{x \text { in } 1}\left|f^{(n+1)}(x)\right| .
$$

${ }^{1}$ This theorem appears in section 11.10 on page 780 in Stewart.

Example
(i) Find the Taylor polynomial of degree 2 for $f(x)=x \ln x$ centered at $a=1$.
(ii) Then use Taylor's inequality to estimate the accuracy when T_{2} is used to approximate f on the interval $[0.9,1.1]$.

$$
\begin{array}{ll}
T_{2}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2} \\
f(x)=x \ln x & f(1)=0 \\
f^{\prime}(x)=\ln x+1 & f^{\prime}(1)=1 \\
f^{\prime \prime}(x)=\frac{1}{x} & f^{\prime \prime}(1)=1 \\
f^{\prime \prime \prime}(x)=\frac{-1}{x^{2}} &
\end{array}
$$

$$
T_{2}(x)=x-1+\frac{1}{2}(x-1)^{2}
$$

(i)

$$
\left|f(x)-T_{2}(x)\right| \leqslant \frac{M|x-1|^{3}}{3!} \text { where } M=\max _{[0.9}\left|f^{\prime \prime \prime}(x)\right|
$$

Find $M:\left|f^{\prime \prime \prime}(x)\right|=\left|-\frac{1}{x^{2}}\right|=\frac{1}{x^{2}}$

$$
M=\frac{1}{(0.9)^{2}}=\left(\frac{10}{9}\right)^{2}=\frac{100}{81}
$$

Worst case error for $|x-1|^{3}$ is

$$
|0.1|^{3}=10^{-3}
$$

The error is "n oworse" then

$$
\begin{aligned}
\left|f(x)-T_{2}(x)\right| & \leq \frac{100}{81} \cdot \frac{10^{-3}}{3!}=\frac{1}{10 \cdot 81 \cdot 6} \\
& =\frac{1}{810 \cdot 6}=\frac{1}{4860}
\end{aligned}
$$

