April 24 Math 3260 sec. 55 Spring 2018

Section 5.2: The Characteristic Equation

Definition: For n x n matrix A, the expression
det(A — \/)

is an n" degree polynomial in \. It is called the characteristic
polynomial of A.

Definition:The equation
det(A—A)=0

is called the characteristic equation of A.

Theorem: The scalar ) is an eigenvalue of the matrix A if and only if it
is a root of the characteristic equation.
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Multiplicities

Definition: The algebraic multiplicity of an eigenvalue is its
multiplicity as a root of the characteristic equation.

Definition: The geometric multiplicity of an eigenvalue is the
dimension of its corresponding eigenspace.
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Similarity

Definition: Two n x n matrices A and B are said to be similar if there
exists an invertible matrix P such that
B=P'AP.

The mapping A — P~'AP is called a similarity transformation’.

Theorem: If A and B are similar matrices, then they have the same
characteristic equation, and hence the same eigenvalues.

"Note that similarity is NOT related to being row equivalent.
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If B= P~1AP, then det(B — \l) =det(A — \/)
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Example Continued...
Show that the columns of P are eigenvectors of A where
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Eigenvalues of a real matrix need not be real

Find the eigenvalues of the matrix A = 4 3
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Section 5.3: Diagonalization
Determine the eigenvalues of the matrix D® where D = [
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Diagonal Matrices

Recall: A matrix D is diagonal if it is both upper and lower triangular
(its only nonzero entries are on the diagonal).

Note: If D is diagonal with diagonal entries dj;, then D is diagonal with

diagonal entries df for positive integer k. Moreover, the eigenvalues of
D are the diagonal entries.
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Powers and Similarity
Show that if A and B are similar, with similarity tranformation matrix P,
then A¥ and B are similar with the same matrix P.
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Diagonalizability

Defintion: An n x n matrix A is called diagonalizable if it is similar to
a diagonal matrix D. That is, provided there exists a nonsingular matrix
P such that D = P~'AP—i.e. A= PDP~'.

Theorem: The n x n matrix A is diagonalizable if and only if Ahas n
linearly independent eigenvectors. In this case, the matrix P is the
matrix whose columns are the n linearly independent eigenvectors of
A.
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Example

1 3 3
Diagonalize the matrix A if possible. A = { -3 -5 -3 ]
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Example

2 4 3
Diagonalize the matrix A if possible. A = { -4 -6 -3 ]
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Theorem (a second on diagonalizability)

Recall: (sec. 5.1) If Ay and ), are distinct eigenvalues of a matrix, the
corresponding eigenvectors are linearly independent.

Theorem: If the n x n matrix A has n distinct eigenvalues, then A is
diagonalizable.

Note: This is a sufficiency condition, not a necessity condition. We've
already seen a matrix with a repeated eigenvalue that was
diagonalizable.
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Theorem (a third on diagonalizability)

Theorem: Let A be an n x n matrix with distinct eigenvalues

)\1, ceey )\p

(a) The geometric multiplicity (dimension of the eigenspace) of A\ is
less than or equal to the algebraic multiplicity of k.

(b) The matrix is diagonalizable if and only if the sum of the geometric
multiplicities is n—i.e. the sum of dimensions of all eigenspaces is
n so that there are n linearly independent eigenvectors.

(c) If Ais diagonalizable, and By is a basis for the eigenspace for A,
then the collection (union) of bases By, ..., By is a basis for R".

Remark: The union of the bases referred to in part (c) is called an
eigenvector basis for R". (Of course, one would need to reference
the specific matrix. )
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