April 24 Math 3260 sec. 55 Spring 2018

Section 5.2: The Characteristic Equation

Definition: For $n \times n$ matrix *A*, the expression

 $\det(\boldsymbol{A} - \lambda \boldsymbol{I})$

is an n^{th} degree polynomial in λ . It is called the **characteristic polynomial** of *A*.

Definition:The equation

 $\det(A - \lambda I) = 0$

is called the **characteristic equation** of *A*.

Theorem: The scalar λ is an eigenvalue of the matrix *A* if and only if it is a root of the characteristic equation.

April 18, 2018 1 / 57

Definition: The **algebraic multiplicity** of an eigenvalue is its multiplicity as a root of the characteristic equation.

Definition: The **geometric multiplicity** of an eigenvalue is the dimension of its corresponding eigenspace.

Similarity

Definition: Two $n \times n$ matrices *A* and *B* are said to be **similar** if there exists an invertible matrix *P* such that

$$B=P^{-1}AP.$$

The mapping $A \mapsto P^{-1}AP$ is called a **similarity transformation**¹.

Theorem: If *A* and *B* are similar matrices, then they have the same characteristic equation, and hence the same eigenvalues.

¹Note that similarity is NOT related to being row equivalent.

If $B = P^{-1}AP$, then det $(B - \lambda I) = det(A - \lambda I)$ det (B- JI) = det (P'AP - JI) * I= P'I **P** = $\Delta t (P^{-1}AP - \lambda P^{-1}IP)$ $= dut(P'(AP - \lambda IP))$ * det (XY) = = $dt(P'(A - \lambda I)P)$ 1. t(X) Jul(Y) $: dt(P') dt(A-\lambda I) dt(P)$ = dut(P') det(P) dut(A-XI) $\# dt(p') = \frac{1}{1.1(p)}$ = 1 dut(A-XI) イロト イポト イヨト イヨト 二日 April 18, 2018 4/57

Example

Show that $A = \begin{vmatrix} -18 & 42 \\ -7 & 17 \end{vmatrix}$ and $B = \begin{vmatrix} 3 & 0 \\ 0 & -4 \end{vmatrix}$ are similar with the matrix *P* for the similarity transformation given by $P = \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix}$. $\vec{P}' = \frac{1}{dr(P)} \begin{vmatrix} 1 & -3 \\ -1 & 2 \end{vmatrix} = \begin{pmatrix} -1 & 3 \\ 1 & -2 \end{vmatrix}$ PAP $\vec{P}^{'}AP = \begin{pmatrix} -1 & 3 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} -18 & 42 \\ -2 & 17 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix}$ $= \begin{bmatrix} -1 & 3 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 6 & -12 \\ 3 & -4 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & -4 \end{bmatrix}$ < 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example Continued...

Show that the columns of P are eigenvectors of A where

$$A = \begin{bmatrix} -18 & 42 \\ -7 & 17 \end{bmatrix} \text{ and } P = \begin{bmatrix} 2 & 3 \\ 1 & 1 \\ p_1 & p_2 \end{bmatrix}.$$
Compute $A\dot{P}_1 = \begin{bmatrix} -18 & 42 \\ -7 & 17 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ $e_{gan} \text{ vector for}$

$$= \begin{bmatrix} 6 \\ 3 \end{bmatrix} = 3 \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 $\lambda_1 = 3$

$$A\ddot{P}_1 = \begin{bmatrix} -18 & 42 \\ -7 & 17 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} -12 \\ -4 \end{bmatrix} \begin{bmatrix} -12 \\ 1 \end{bmatrix}$$
 $\ddot{P}_2 \text{ is } n \text{ eigen vector } \text{ with } \lambda_2 = -4$

April 18, 2018 8 / 57

Eigenvalues of a real matrix need not be real Find the eigenvalues of the matrix $A = \begin{bmatrix} 4 & 3 \\ -5 & 2 \end{bmatrix}$. $J_{ab}(A - \lambda \underline{\Gamma}) = J_{b}\left(\begin{pmatrix} 4 - \lambda & 3 \\ -5 & 2 - \lambda \end{pmatrix}\right) = (4 - \lambda)(2 - \lambda)$

$$(\lambda - 3)^{2} = -14 \implies \lambda - 3 = \frac{1}{\sqrt{14}}$$

$$(\lambda - 3)^{2} = -14 \implies \lambda - 3 = \frac{1}{\sqrt{14}}$$

$$\lambda = 3 \pm \sqrt{14}$$

$$\lambda = 3 \pm \sqrt{14}$$

Both eigenvalues are complex valued.

• • • • • • • • • • • •

Section 5.3: Diagonalization

Determine the eigenvalues of the matrix D^3 where $D = \begin{vmatrix} 3 & 0 \\ 0 & -4 \end{vmatrix}$.

$$D^{2}: \begin{bmatrix} 3 & 0 \\ 0 & -4 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & -4 \end{bmatrix} = \begin{bmatrix} 3^{2} & 0 \\ 0 & (-4)^{2} \end{bmatrix}$$

$$D^{3}: \begin{bmatrix} 3 & 0 \\ 0 & -4 \end{bmatrix} \begin{bmatrix} 3^{2} & 0 \\ 0 & (-4)^{2} \end{bmatrix} = \begin{bmatrix} 3^{3} & 0 \\ 0 & (-4)^{3} \end{bmatrix}$$
The eisenvalue of D^{3} and $\lambda = 2T$, $\lambda z = -64$

April 18, 2018 10 / 57

イロト 不得 トイヨト イヨト 二日

Recall: A matrix *D* is diagonal if it is both upper and lower triangular (its only nonzero entries are on the diagonal).

Note: If *D* is diagonal with diagonal entries d_{ii} , then D^k is diagonal with diagonal entries d_{ii}^k for positive integer *k*. Moreover, the eigenvalues of *D* are the diagonal entries.

Powers and Similarity

Show that if A and B are similar, with similarity tranformation matrix P, then A^k and B^k are similar with the same matrix P.

Suppose
$$B = P^{-1}AP$$
. Note that
 $B^{2} = (P^{-1}AP)^{2} = P^{-1}AP P^{-1}AP = P^{-1}AIAP = P^{-1}A^{2}P$
 B^{2} is similar to A^{2} with the same P .
For integer $k \ge 1$
 $B^{k} = B B^{k-1} = (P^{-1}AP)(P^{-1}A^{k-1}P)$ if B^{k-1} is
 $similar to$
 $= P^{-1}AA^{k-1}P$
 $= P^{-1}A^{k}P$

イロト イポト イヨト イヨト

Diagonalizability

Definition: An $n \times n$ matrix A is called **diagonalizable** if it is similar to a diagonal matrix D. That is, provided there exists a nonsingular matrix P such that $D = P^{-1}AP$ —i.e. $A = PDP^{-1}$.

Theorem: The $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors. In this case, the matrix P is the matrix whose columns are the n linearly independent eigenvectors of A.

Example

Diagonalize the matrix A if possible.
$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$
$$d \left((A - \lambda \overline{L}) = d \left(\begin{pmatrix} 1 - \lambda & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 - \lambda \end{pmatrix} \right)$$
$$: (1 - \lambda) \left((-5 - \lambda)(1 - \lambda) + 9 \right) - 3 \left(\cdot 3(1 - \lambda) + 9 \right) + 3 \left(-9 - 3(-5 - \lambda) \right)$$
$$: (1 - \lambda) \left(\lambda^{2} + 9 \lambda + 9 \right) - 3 \left(3 \lambda + 6 \right) + 3 \left(3 \lambda + 6 \right)$$
$$= (1 - \lambda) \left(\lambda^{2} + 9 \lambda + 9 \right) - 3 \left(3 \lambda + 6 \right) + 3 \left(3 \lambda + 6 \right)$$

< □ ト < 部 ト < 差 ト < 差 ト 差 の Q ペ April 18, 2018 14 / 57

The eigenvalues are
$$\lambda_1 = 1$$
 (alg. mult. 1)
 $\lambda_2 = -2$ (alg. mult. 2)

Find eigen vectors:

$$\lambda_{i}=1 \qquad A-1I = \begin{pmatrix} 0 & 3 & 3 \\ -3 & -6 & -3 \\ 3 & 3 & 0 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

A eigenvector is
$$\vec{X}_1 = \begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix}$$

・ロ ト 4 日 ト 4 目 ト 4 目 ト 目 の Q ()
April 18, 2018 15 / 57

 $X_1 = X_3$

X2=-X3 X3-free

$$\lambda_{2} = -Z \qquad A + Z I = \begin{pmatrix} 3 & 3 & 3 \\ -3 & -3 & -3 \\ 3 & 3 & 3 \end{pmatrix} \xrightarrow{\text{cret}} \begin{pmatrix} 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$\xrightarrow{2}{X} = X_{2} \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + X_{3} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \qquad \qquad X_{1} = -X_{2} - X_{3}$$
$$X_{2}, X_{3} - \text{free}$$

We can use eigenvectors

$$\vec{X}_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \quad \vec{X}_3 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

April 18, 2018 16 / 57

・ロト・西ト・ヨト・ヨー うへの

Let have 3 lin, ind eigen verters

$$\begin{bmatrix}
1 \\
-1 \\
-1
\end{bmatrix}; \begin{bmatrix}
-1 \\
1 \\
-1
\end{bmatrix}; \begin{bmatrix}
-1 \\
0 \\
-1
\end{bmatrix}; \begin{bmatrix}
-1 \\
0 \\
-1
\end{bmatrix}$$
A P matrix is

$$P = \begin{bmatrix}
1 & -1 & -1 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{bmatrix}$$
Turns out

$$\vec{P} = \begin{bmatrix}
1 & 1 & 1 \\
-1 & 2 & 1 \\
-1 & -1 & 0
\end{bmatrix}$$
Turns out

April 18, 2018 17 / 57

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example

Diagonalize the matrix A if possible.
$$A = \begin{bmatrix} 2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$

$$d_{a} \left(\begin{pmatrix} 2 -\lambda & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1 \end{pmatrix} \right)$$

$$\vdots$$

$$= -\lambda^{3} - 3\lambda^{2} + 4 = (1 - \lambda)(\lambda + 2)^{2}$$

$$\lambda_{1} = \lambda, \quad \lambda_{2} = -2$$

April 18, 2018 19 / 57

◆□> ◆圖> ◆ヨ> ◆ヨ> 「ヨ」

Find eigen vectors:

$$A - I = \begin{pmatrix} 1 & 4 & -3 \\ -4 & 7 & -3 \\ 3 & 3 & 0 \end{pmatrix} rret \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\vec{X}_{1} \cdot \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix}$$

$$A + 2I = \begin{pmatrix} 4 & 4 & 7 \\ -4 & -3 \\ 3 & 3 & 3 \end{pmatrix} rret \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 \\ -7 & \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$x_{1} = -x_{2}$$

$$x_{3} = 0 , x_{2} - fuel$$

$$x_{1} = x_{2} = 0$$

An eisenvedon is
$$\vec{X}_2 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$
.
A is not diagonalizable. It doesn't
have enough lin, independent eigen vertors.

Theorem (a second on diagonalizability)

Recall: (sec. 5.1) If λ_1 and λ_2 are distinct eigenvalues of a matrix, the corresponding eigenvectors are linearly independent.

Theorem: If the $n \times n$ matrix A has n distinct eigenvalues, then A is diagonalizable.

Note: This is a *sufficiency* condition, not a *necessity* condition. We've already seen a matrix with a repeated eigenvalue that was diagonalizable.

> April 18, 2018

24/57

Theorem (a third on diagonalizability)

Theorem: Let *A* be an $n \times n$ matrix with distinct eigenvalues $\lambda_1, \ldots, \lambda_p$.

- (a) The geometric multiplicity (dimension of the eigenspace) of λ_k is less than or equal to the algebraic multiplicity of λ_k .
- (b) The matrix is diagonalizable if and only if the sum of the geometric multiplicities is n—i.e. the sum of dimensions of all eigenspaces is n so that there are n linearly independent eigenvectors.
- (c) If *A* is diagonalizable, and \mathcal{B}_k is a basis for the eigenspace for λ_k , then the collection (union) of bases $\mathcal{B}_1, \ldots, \mathcal{B}_p$ is a basis for \mathbb{R}^n .

Remark: The union of the bases referred to in part (c) is called an **eigenvector basis** for \mathbb{R}^n . (Of course, one would need to reference the specific matrix.)

くロン 不通 とくほ とくほ とうほう