April 24 Math 3260 sec. 56 Spring 2018

Section 5.2: The Characteristic Equation

Definition: For $n \times n$ matrix A, the expression

$$det(A - \lambda I)$$

is an n^{th} degree polynomial in λ . It is called the **characteristic polynomial** of A.

Definition:The equation

$$\det(A - \lambda I) = 0$$

is called the **characteristic equation** of *A*.

Theorem: The scalar λ is an eigenvalue of the matrix A if and only if it is a root of the characteristic equation.

Multiplicities

Definition: The **algebraic multiplicity** of an eigenvalue is its multiplicity as a root of the characteristic equation.

Definition: The **geometric multiplicity** of an eigenvalue is the dimension of its corresponding eigenspace.

Similarity

Definition: Two $n \times n$ matrices A and B are said to be **similar** if there exists an invertible matrix P such that

$$B = P^{-1}AP$$
.

The mapping $A \mapsto P^{-1}AP$ is called a **similarity transformation**¹.

Theorem: If *A* and *B* are similar matrices, then they have the same characteristic equation, and hence the same eigenvalues.

¹Note that similarity is NOT related to being row equivalent. ← ≥ → ← ≥ → ◆ ◆

If
$$B = P^{-1}AP$$
, then $det(B - \lambda I) = det(A - \lambda I)$

$$det(B-\lambda^{\perp}) = det(P'AP-\lambda^{\perp}) * I = P'IP$$

$$= det(P'AP-\lambda^{\perp}IP)$$

$$= det(P'AP-\lambda^{\perp}IP)$$

*
$$Lt(p^{-1}) = \frac{1}{Lt(p)}$$

= dt(A-XI)

That is dt (B-XI) = dt (A-XI).

B has the same characteristic polynomial and hence the same eigen values as A.

Example

Show that $A = \begin{bmatrix} -18 & 42 \\ -7 & 17 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 0 \\ 0 & -4 \end{bmatrix}$ are similar with the matrix P for the similarity transformation given by $P = \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix}$.

We'll show
$$B = P^{T}AP$$

$$P^{-1} = \frac{1}{44P} \begin{bmatrix} 1 & -3 \\ -1 & 2 \end{bmatrix} = -1 \begin{bmatrix} 1 & -3 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} -1 & 3 \\ 1 & -2 \end{bmatrix}$$

April 18, 2018 6 / 57

$$= \begin{bmatrix} 1 & 3 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 6 & -12 \\ 3 & -4 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & -4 \end{bmatrix}$$

Example Continued...

Show that the columns of P are eigenvectors of A where

$$A = \begin{bmatrix} -18 & 42 \\ -7 & 17 \end{bmatrix} \text{ and } P = \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix}.$$

$$A \vec{p}_1 = \begin{bmatrix} -18 & 42 \\ -7 & 17 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \end{bmatrix} = 3 \begin{bmatrix} 2 \\ 1 \end{bmatrix} \qquad \vec{p}_1 \text{ is an eigenvector}$$

$$A \vec{p}_2 = \begin{bmatrix} -18 & 42 \\ -7 & 17 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} -12 \\ -4 \end{bmatrix} = -4 \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$\vec{p}_2 = \begin{bmatrix} -18 & 42 \\ -7 & 17 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} -12 \\ -4 \end{bmatrix} = -4 \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$\vec{p}_3 \text{ is an eigenvector all } \lambda_2 = -4.$$

April 18, 2018 8 / 57

Eigenvalues of a real matrix need not be real

Find the eigenvalues of the matrix
$$A = \begin{bmatrix} 4 & 3 \\ -5 & 2 \end{bmatrix}$$
.

$$d\mathcal{L}(A-\lambda L) = d\mathcal{L}\left(\begin{bmatrix} 4-\lambda & 3\\ -5 & 2-\lambda \end{bmatrix}\right) = (4-\lambda)(2-\lambda)+15$$
$$= \lambda^2 - 6\lambda + 23$$

$$0 = \lambda^{2} - 6\lambda + 23 = \lambda^{2} - 6\lambda + 9 + 14 = (\lambda - 3)^{2} + 14$$

$$(\lambda - 3)^{2} = -14 \implies \lambda - 3 = \pm \sqrt{14} i$$

$$\lambda = 3 \pm \sqrt{14} i$$

Section 5.3: Diagonalization

Determine the eigenvalues of the matrix D^3 where $D = \begin{bmatrix} 3 & 0 \\ 0 & -4 \end{bmatrix}$.

$$\mathcal{D}^{2} := \begin{bmatrix} 3 & 0 \\ 6 & -4 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & -4 \end{bmatrix} = \begin{bmatrix} 3^{2} & 0 \\ 0 & (-4)^{2} \end{bmatrix}$$

$$\mathcal{D}^{3} := \mathcal{D}\mathcal{D}^{2} := \begin{bmatrix} 3 & 0 \\ 0 & -4 \end{bmatrix} \begin{bmatrix} 3^{2} & 0 \\ 0 & (-4)^{2} \end{bmatrix} = \begin{bmatrix} 3^{3} & 0 \\ 0 & (-4)^{3} \end{bmatrix}$$
The eigenvalues are $\lambda_{1} = 3^{3} = 3 = \lambda_{2} = (-4)^{3}$

Diagonal Matrices

Recall: A matrix *D* is diagonal if it is both upper and lower triangular (its only nonzero entries are on the diagonal).

Note: If D is diagonal with diagonal entries d_{ii} , then D^k is diagonal with diagonal entries d_{ii}^k for positive integer k. Moreover, the eigenvalues of D are the diagonal entries.

Powers and Similarity

Show that if A and B are similar, with similarity tranformation matrix P, then A^k and B^k are similar with the same matrix P.

Diagonalizability

Defintion: An $n \times n$ matrix A is called **diagonalizable** if it is similar to a diagonal matrix D. That is, provided there exists a nonsingular matrix P such that $D = P^{-1}AP$ —i.e. $A = PDP^{-1}$.

Theorem: The $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors. In this case, the matrix P is the matrix whose columns are the n linearly independent eigenvectors of A.

Example

Diagonalize the matrix A if possible. $A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$

Find the eigenvalues
$$dt(A-\lambda I) = dt \begin{pmatrix} 1-\lambda & 3 & 3 \\ -3 & -5-\lambda & -3 \\ 3 & 3 & 1-\lambda \end{pmatrix}$$

$$= (1-\lambda) \left((-5-\lambda)(1-\lambda) + 9 \right) - 3 \left(\cdot 3(1-\lambda) + 9 \right)$$

$$+ 3 \left(-9 - 3 \left(\cdot 5 - \lambda \right) \right)$$

=
$$(1-\lambda)$$
 $(\lambda^2 + 4\lambda + 4)$ - $3(3\lambda + 6)$ + $3(3\lambda + 6)$
= $(1-\lambda)(\lambda + 2)^2$ = $-\lambda^3 - 3\lambda^2 + 4$
We have 2 eigenvalues, $\lambda = 1$, $\lambda_2 = -2$.
We have 2 eigenvalues, $\lambda = 1$, $\lambda_2 = -2$.

Find eigen vectors:

$$\lambda_i = 1$$
 $A - I = \begin{bmatrix} 0 & 3 & 3 \\ -3 & -6 & -3 \\ 3 & 3 & 0 \end{bmatrix}$ $\xrightarrow{\text{ref}}$ $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$

$$\lambda_{2}=-2 \qquad A+2\Gamma = \begin{pmatrix} 3 & 3 & 3 \\ -3 & -3 & -3 \\ 3 & 3 & 3 \end{pmatrix} \text{ ref } \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\vec{X} = \mathbf{X}_{2} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + \mathbf{X}_{3} \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

$$X_1 = -X_2 - X_3$$

$$X_{2,1} X_3 - \text{file}$$

Two din. independent eigenvectors are $\ddot{X}_{z}=\begin{bmatrix} -1\\ 0\\ 1\end{bmatrix}$ and $\ddot{X}_{3}=\begin{bmatrix} -1\\ 0\\ 1\end{bmatrix}$

$$\vec{X}_{1} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \vec{X}_{2} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \vec{X}_{3} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

We can take
$$P = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
, then

$$\vec{P}' = \begin{bmatrix}
1 & 1 & 1 \\
1 & 2 & 1 \\
-1 & -1 & 0
\end{bmatrix}$$
 $\vec{D} = \vec{P}' A P = \begin{bmatrix}
1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -2
\end{bmatrix}$

Example

Diagonalize the matrix A if possible. $A = \begin{bmatrix} 2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1 \end{bmatrix}$

Find eigenvalues
$$dt(A-\lambda T) = dt \begin{pmatrix} 2-\lambda & 4 & 3 \\ -4 & -6-\lambda & -3 \\ 3 & 3 & 1-\lambda \end{pmatrix}$$

$$\vdots$$

$$= -\lambda^3 - 3\lambda^2 + 4$$

$$= (1-\lambda)(\lambda+2)^2$$

Find pigurectors:

$$\lambda_{i=1} \qquad A-I = \begin{pmatrix} 1 & 4 & 3 \\ -4 & -3 & -3 \\ 3 & 3 & 0 \end{pmatrix} \xrightarrow{\text{cref}} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

on elser vector
$$\vec{X}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$\lambda_{2}=2\qquad A+2\overline{L}=\left(\begin{array}{cccc} 4 & 4 & 3\\ -4 & -4 & 3\\ 3 & 3 & 3 \end{array}\right) \xrightarrow{\text{met}} \left(\begin{array}{cccc} 1 & 1 & 0\\ 0 & 0 & 1\\ 0 & 0 & 0 \end{array}\right)$$

The eign vectors are
$$X = X_2 \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

X₁ = -X_Z X₃ = 0 X₂-free

A doesn't posses three lin. independent eigen vectors.

A is not diagonalizable.

Theorem (a second on diagonalizability)

Recall: (sec. 5.1) If λ_1 and λ_2 are distinct eigenvalues of a matrix, the corresponding eigenvectors are linearly independent.

Theorem: If the $n \times n$ matrix A has n distinct eigenvalues, then A is diagonalizable.

Note: This is a *sufficiency* condition, not a *necessity* condition. We've already seen a matrix with a repeated eigenvalue that was diagonalizable.

Theorem (a third on diagonalizability)

Theorem: Let A be an $n \times n$ matrix with distinct eigenvalues $\lambda_1, \ldots, \lambda_p$.

- (a) The geometric multiplicity (dimension of the eigenspace) of λ_k is less than or equal to the algebraic multiplicity of λ_k .
- (b) The matrix is diagonalizable if and only if the sum of the geometric multiplicities is *n*—i.e. the sum of dimensions of all eigenspaces is *n* so that there are *n* linearly independent eigenvectors.
- (c) If A is diagonalizable, and \mathcal{B}_k is a basis for the eigenspace for λ_k , then the collection (union) of bases $\mathcal{B}_1, \ldots, \mathcal{B}_p$ is a basis for \mathbb{R}^n .

Remark: The union of the bases referred to in part (c) is called an **eigenvector basis** for \mathbb{R}^n . (Of course, one would need to reference the specific matrix.)