April 24 Math 3260 sec. 56 Spring 2018

Section 5.2: The Characteristic Equation

Definition: For $n \times n$ matrix A, the expression

$$
\operatorname{det}(A-\lambda /)
$$

is an $n^{\text {th }}$ degree polynomial in λ. It is called the characteristic polynomial of A.

Definition:The equation

$$
\operatorname{det}(A-\lambda I)=0
$$

is called the characteristic equation of A.
Theorem: The scalar λ is an eigenvalue of the matrix A if and only if it is a root of the characteristic equation.

Multiplicities

Definition: The algebraic multiplicity of an eigenvalue is its multiplicity as a root of the characteristic equation.

Definition: The geometric multiplicity of an eigenvalue is the dimension of its corresponding eigenspace.

Similarity

Definition: Two $n \times n$ matrices A and B are said to be similar if there exists an invertible matrix P such that

$$
B=P^{-1} A P
$$

The mapping $A \mapsto P^{-1} A P$ is called a similarity transformation ${ }^{1}$.

Theorem: If A and B are similar matrices, then they have the same characteristic equation, and hence the same eigenvalues.
${ }^{1}$ Note that similarity is NOT related to being row equivalent.

If $B=P^{-1} A P$, then $\operatorname{det}(B-\lambda I)=\operatorname{det}(A-\lambda /)$

$$
\begin{aligned}
\operatorname{det}(B-\lambda I) & =\operatorname{det}\left(P^{-1} A P-\lambda I\right) \quad * I=P^{-1} I P \\
& =\operatorname{det}\left(P^{-1} A P-\lambda P^{-1} I P\right) \\
& =\operatorname{det}\left(P^{-1}(A P-\lambda I P)\right) \quad * \operatorname{det}(X Y)= \\
& =\operatorname{det}\left(P^{-1}(A-\lambda I) P\right) \operatorname{dt}(X) \operatorname{dt}(Y) \\
& =\operatorname{det}\left(P^{\prime}\right) \operatorname{dtt}(A-\lambda I) \operatorname{det}(P) \\
& =\operatorname{det}(A-\lambda I) \operatorname{det}\left(P^{-1}\right) \operatorname{dtt}(P)
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{det}(A-\lambda I) \cdot 1 \\
& =\operatorname{det}(A-\lambda I)
\end{aligned}
$$

That is $\quad \operatorname{dt}(B-\lambda I)=\operatorname{det}(A-\lambda I)$.

B has the same characteristic polynomial and hence the same eigen values as A.

Example
Show that $A=\left[\begin{array}{cc}-18 & 42 \\ -7 & 17\end{array}\right]$ and $B=\left[\begin{array}{cc}3 & 0 \\ 0 & -4\end{array}\right]$ are similar with the matrix P for the similarity transformation given by $P=\left[\begin{array}{ll}2 & 3 \\ 1 & 1\end{array}\right]$.
well show $B=P^{-1} A P$

$$
\begin{gathered}
P^{-1}=\frac{1}{\operatorname{det}(P)}\left[\begin{array}{cc}
1 & -3 \\
-1 & 2
\end{array}\right]=-1\left[\begin{array}{cc}
1 & -3 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{cc}
-1 & 3 \\
1 & -2
\end{array}\right] \\
P^{-1} A P=\left[\begin{array}{cc}
-1 & 3 \\
1 & -2
\end{array}\right]\left[\begin{array}{cc}
-18 & 42 \\
-7 & 17
\end{array}\right]\left[\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right]
\end{gathered}
$$

$$
=\left[\begin{array}{cc}
-1 & 3 \\
1 & -2
\end{array}\right]\left[\begin{array}{rr}
6 & -12 \\
3 & -4
\end{array}\right]=\left[\begin{array}{cc}
3 & 0 \\
0 & -4
\end{array}\right]
$$

Example Continued...
Show that the columns of P are eigenvectors of A where

$$
A=\left[\begin{array}{cc}
-18 & 42 \\
-7 & 17
\end{array}\right] \quad \text { and } \quad P=\left[\begin{array}{cc}
2 & 3 \\
1 & 1 \\
\overrightarrow{\rho_{1}} & \vec{p}_{2}
\end{array}\right] .
$$

$A \vec{p}_{1}=\left[\begin{array}{cc}-18 & 42 \\ -7 & 17\end{array}\right]\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{l}6 \\ 3\end{array}\right]=3\left[\begin{array}{l}2 \\ 1\end{array}\right] \quad \begin{aligned} & \vec{p}_{1} \text { is an eigenvector } \\ & \omega 1\end{aligned}$ w) $\lambda_{1}=3$

$$
A \vec{p}_{2}=\left[\begin{array}{cc}
-18 & 42 \\
-7 & 17
\end{array}\right]\left[\begin{array}{l}
3 \\
1
\end{array}\right]=\left[\begin{array}{l}
-12 \\
-4
\end{array}\right]=-4\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

\vec{P}_{2} is an eigen vector wi $\lambda_{2}=-4$.

Eigenvalues of a real matrix need not be real Find the eigenvalues of the matrix $A=\left[\begin{array}{cc}4 & 3 \\ -5 & 2\end{array}\right]$.

$$
\begin{aligned}
\operatorname{dt}(A-\lambda I)=\operatorname{dt}\left(\left[\begin{array}{cc}
4-\lambda & 3 \\
-5 & 2-\lambda
\end{array}\right]\right) & =(4-\lambda)(2-\lambda)+15 \\
& =\lambda^{2}-6 \lambda+23 \\
0=\lambda^{2}-6 \lambda+23 & =\lambda^{2}-6 \lambda+9+14=(\lambda-3)^{2}+14 \\
(\lambda-3)^{2}=-14 \Rightarrow \lambda-3 & = \pm \sqrt{14} i \\
\lambda & =3 \pm \sqrt{14} i
\end{aligned}
$$

Section 5.3: Diagonalization
Determine the eigenvalues of the matrix D^{3} where $D=\left[\begin{array}{cc}3 & 0 \\ 0 & -4\end{array}\right]$.

$$
\begin{aligned}
& D^{2}=\left[\begin{array}{cc}
3 & 0 \\
0 & -4
\end{array}\right]\left[\begin{array}{cc}
3 & 0 \\
0 & -4
\end{array}\right]=\left[\begin{array}{cc}
3^{2} & 0 \\
0 & (-4)^{2}
\end{array}\right] \\
& D^{3}=D D^{2}=\left[\begin{array}{cc}
3 & 0 \\
0 & -4
\end{array}\right]\left[\begin{array}{cc}
3^{2} & 0 \\
0 & (-4)^{2}
\end{array}\right]=\left[\begin{array}{cc}
3^{3} & 0 \\
0 & (-4)^{3}
\end{array}\right]
\end{aligned}
$$

The eigenvalues are $\lambda_{1}=3^{3}$ and $\lambda_{2}=(-4)^{3}$

Diagonal Matrices

Recall: A matrix D is diagonal if it is both upper and lower triangular (its only nonzero entries are on the diagonal).

Note: If D is diagonal with diagonal entries $d_{i j}$, then D^{k} is diagonal with diagonal entries $d_{i j}^{k}$ for positive integer k. Moreover, the eigenvalues of D are the diagonal entries.

Powers and Similarity
Show that if A and B are similar, with similarity tranformation matrix P, then A^{k} and B^{k} are similar with the same matrix P.

Suppose $B=P^{-1} A P$. Then

$$
\begin{aligned}
B^{2}=\left(P^{-1} A P\right)^{2} & =P^{-1} A P P^{-1} A P=P^{-1} A I A P=P^{-1} A A P \\
B^{2} & =P^{-1} A^{2} P
\end{aligned}
$$

For $k \geqslant 1$

$$
\begin{array}{rlrl}
B^{k} & =B B^{k-1}=P^{-1} A P\left(P^{-1} A^{k-1} P\right) & \text { if } B^{k-1} \text { is inion } \\
\text { o } A^{k-1} \\
& =P^{-1} A A^{k-1} P=P^{-1} A^{k} P
\end{array}
$$

Diagonalizability

Defintion: An $n \times n$ matrix A is called diagonalizable if it is similar to a diagonal matrix D. That is, provided there exists a nonsingular matrix P such that $D=P^{-1} A P$-i.e. $A=P D P^{-1}$.

Theorem: The $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors. In this case, the matrix P is the matrix whose columns are the n linearly independent eigenvectors of A.

Example
Diagonalize the matrix A if possible. $A=\left[\begin{array}{ccc}1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1\end{array}\right]$

$$
\begin{aligned}
& \text { Find the eigen values }\left(\left[\begin{array}{ccc}
1-\lambda & 3 & 3 \\
-3 & -5-\lambda & -3 \\
3 & 3 & 1-\lambda
\end{array}\right]\right) \\
& \left.\begin{array}{r}
\operatorname{dt}(A-\lambda I)=d t \\
=(1-\lambda)((-5-\lambda)(1-\lambda)+9)
\end{array}\right)-3(-3(1-\lambda)+9) \\
& +3(-9-3(-5-\lambda))
\end{aligned}
$$

$$
\begin{aligned}
& =(1-\lambda)\left(\lambda^{2}+4 \lambda+4\right)-3(3 \lambda+6)+3(3 \lambda+6) \\
& =(1-\lambda)(\lambda+2)^{2}=-\lambda^{3}-3 \lambda^{2}+4
\end{aligned}
$$

we have 2 eigenvolves, $\lambda_{1}=1, \lambda_{2}=-2$.

$$
\text { alg ex pi lice }_{\text {mus }}^{\pi}
$$

Find eigen vectors:

$$
\begin{aligned}
& \text { Find eigen vectors: } \\
& \lambda_{1}=1 \quad A-I=\left[\begin{array}{ccc}
0 & 3 & 3 \\
-3 & -6 & -3 \\
3 & 3 & 0
\end{array}\right] \xrightarrow{\text { ref }}\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

An eigenvector is

$$
x_{1}=x_{3}
$$

$$
\begin{gathered}
\text { An eigen vetoor } \begin{array}{c}
x_{2}=-x_{3} \\
x_{1}=\text { free } \\
\lambda_{2}=-2 \quad A+2\left[=\left[\begin{array}{ccc}
1 \\
-1 \\
1 & 3 & 3 \\
-3 & -3 & -3 \\
3 & 3 & 3
\end{array}\right] \rightarrow \begin{array}{lll}
\rightarrow \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
\vec{x}=x_{2}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
\end{array} \quad \begin{array}{l}
x_{1}=-x_{2}-x_{3} \\
x_{2}, x_{3}-\text { fue }
\end{array}
\end{gathered}
$$

Two lin. indeperdent eigenvectors are

$$
\vec{x}_{2}=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] \text { and } \vec{x}_{3}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

we have 3 lin . independent eisen vectors

$$
\vec{x}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right], \vec{x}_{2}=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right], \vec{x}_{3}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

we con take $P=\left[\begin{array}{rrr}1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$, then

$$
P^{-1}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & 1 \\
-1 & -1 & 0
\end{array}\right] \quad D=P^{-1} A P=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -2
\end{array}\right]
$$

Example
Diagonalize the matrix A if possible. $A=\left[\begin{array}{ccc}2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1\end{array}\right]$
Find eigen values

$$
\begin{aligned}
\operatorname{dt}(A-\lambda I) & =\operatorname{dt}\left(\left[\begin{array}{ccc}
2-\lambda & 4 & 3 \\
-4 & -6-\lambda & -3 \\
3 & 3 & 1-\lambda
\end{array}\right]\right) \\
& \vdots \\
& =-\lambda^{3}-3 \lambda^{2}+4 \\
& =(1-\lambda)(\lambda+2)^{2}
\end{aligned}
$$

The eigenvolues are $\lambda_{1}=1, \lambda_{2}=-2$

Find eigunvectors:

$$
\left.\begin{array}{c}
\lambda_{1}=1 \quad A-I=\left[\begin{array}{ccc}
1 & 4 & 3 \\
-4 & -7 & -3 \\
3 & 3 & 0
\end{array}\right] \xrightarrow{\text { rret }}\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] \\
\\
\text { an eigen vector } \\
\text { is } \\
\vec{X}_{1}
\end{array}\right]\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right] .
$$

$$
\begin{gathered}
\lambda_{2}=-2+2 I=\left[\begin{array}{ccc}
4 & 4 & 3 \\
-4 & -4 & 3 \\
3 & 3 & 3
\end{array}\right] \xrightarrow{\text { ret }}\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \\
x_{1}=-x_{2} \\
x_{3}=0 \\
x_{2} \text {-free } \\
\text { The essen vectors are } \\
\vec{x}=x_{2}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]
\end{gathered}
$$

A doesnit posses three lin. independent eigen vectors.
A is not diagunalizable.

Theorem (a second on diagonalizability)

Recall: (sec. 5.1) If λ_{1} and λ_{2} are distinct eigenvalues of a matrix, the corresponding eigenvectors are linearly independent.

Theorem: If the $n \times n$ matrix A has n distinct eigenvalues, then A is diagonalizable.

Note: This is a sufficiency condition, not a necessity condition. We've already seen a matrix with a repeated eigenvalue that was diagonalizable.

Theorem (a third on diagonalizability)

Theorem: Let A be an $n \times n$ matrix with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{p}$.
(a) The geometric multiplicity (dimension of the eigenspace) of λ_{k} is less than or equal to the algebraic multiplicity of λ_{k}.
(b) The matrix is diagonalizable if and only if the sum of the geometric multiplicities is $n-i . e$. the sum of dimensions of all eigenspaces is n so that there are n linearly independent eigenvectors.
(c) If A is diagonalizable, and \mathcal{B}_{k} is a basis for the eigenspace for λ_{k}, then the collection (union) of bases $\mathcal{B}_{1}, \ldots, \mathcal{B}_{p}$ is a basis for \mathbb{R}^{n}.

Remark: The union of the bases referred to in part (c) is called an eigenvector basis for \mathbb{R}^{n}. (Of course, one would need to reference the specific matrix.)

