April 27 Math 1190 sec. 63 Spring 2017
Section 4.7: Optimization
Find the volume of the largest right circular cylinder that can be inscribed in a sphere of radius 10.

Acylinden has 2 dimensions, radius and height.
 Call these rand h.
The volume $V=\pi r^{2} h$
To get the largest volume, we wont to maximize V.
Ow constraint is that the cylinder has to fit in the sphere.

If we take a cross section of the sphene wi the cylinder, we set

By the Pythagorean Than

$$
(2 r)^{2}+h^{2}=20^{2}
$$

we reducing $V=\pi r^{2} h$
Solving for r^{2}

$$
\begin{aligned}
4 r^{2}+h^{2} & =20^{2} \\
4 r^{2} & =20^{2}-h^{2} \\
r^{2} & =\frac{1}{4}\left(20^{2}-h^{2}\right)
\end{aligned}
$$

So

$$
\begin{gathered}
V=\pi r^{2} h=\pi\left(\frac{1}{4}\left(20^{2}-h^{2}\right)\right) h \\
V=\frac{\pi}{4}\left(20^{2} h-h^{3}\right)
\end{gathered}
$$

Let's find criticd numben(s).

$$
V^{\prime}(h)=\frac{\pi}{4}\left(20^{2}-3 h^{2}\right)
$$

$V^{\prime}(h)$ is always defined

$$
\begin{aligned}
V^{\prime}(h)=0 & \Rightarrow \frac{\pi}{4}\left(20^{2}-3 h^{2}\right)=0 \\
& \Rightarrow 20^{2}-3 h^{2}=0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad 3 h^{2}=20^{2} \\
& \qquad h^{2}=\frac{20^{2}}{3} \Rightarrow h=\frac{20}{\sqrt{3}} \text { or } h=\frac{-20}{\sqrt{3}} \\
& \\
& \\
& \text { ore crit. \# } h=\frac{20}{\sqrt{3}} .
\end{aligned}
$$

we hove one crit. \# $h=\frac{20}{\sqrt{3}}$.
well use the $2^{n d}$ der. test to see it V taker a max of this h.

$$
\begin{gathered}
V^{\prime}(h)=\frac{\pi}{4}\left(20^{2}-3 h^{2}\right) \\
V^{\prime \prime}(h)=\frac{\pi}{4}(-6 h)=-\frac{6 \pi}{4} h=\frac{-3 \pi}{2} h \\
V^{\prime \prime}\left(\frac{20}{\sqrt{3}}\right)=-\frac{3 \pi}{2} \cdot \frac{20}{\sqrt{3}}<0 \Rightarrow \text { this } h \text { maximizes } V .
\end{gathered}
$$

$V=\frac{\pi}{4}\left(20^{2} h-h^{3}\right)$ so when $h=\frac{20}{\sqrt{3}}$

$$
\begin{aligned}
V\left(\frac{20}{\sqrt{3}}\right) & =\frac{\pi}{4}\left(20^{2} \cdot \frac{20}{\sqrt{3}}-\left(\frac{20}{\sqrt{3}}\right)^{3}\right) \\
& =\frac{\pi}{4}\left(\frac{20^{3}}{\sqrt{3}}-\frac{20^{3}}{3 \sqrt{3}}\right) \\
& =\frac{\pi}{4}\left(\frac{20^{3}}{\sqrt{3}}\right)\left(1-\frac{1}{3}\right) \\
& =\frac{\pi}{4} \cdot \frac{20^{3}}{\sqrt{3}}\left(\frac{2}{3}\right)=\frac{20^{3} \pi}{6 \sqrt{3}}
\end{aligned}
$$

The cylinder of maximum Volume has volume $\frac{20^{3} \pi}{6 \sqrt{3}}$ cubicunits.

Random Questions

(B)

Figure: The graph of $f^{\prime}(x)$ is shown in the upper left. Which of the three graphs could be the graph of $f(x)$?

$$
\begin{aligned}
& \cos \pi+\sin (2 \pi)+1 \\
& -1+0+1=0
\end{aligned}
$$

1. $\lim _{x \rightarrow \pi} \frac{\cos x+\sin (2 x)+1}{x^{2}-\pi^{2} \text { "0." }}$
(A) $\frac{1}{2 \pi}$
$\frac{0}{6}$
se littrule
(B) $\frac{1}{\pi}$
(C) 1
(D) nonexistent

$$
\begin{aligned}
& \lim _{x \rightarrow \pi} \frac{-\sin x+\cos (2 x) \cdot 2}{2 x} \\
&=\frac{-\sin \pi+2 \cos (2 \pi)}{2 \pi}
\end{aligned}=\frac{2}{2 \pi}
$$

Figure: Evaluate the given limit.

The graph of the piecewise-defined function f is shown in the figure above. The graph has a vertical tangent line at $x=-2$ and horizontal tangent lines at $x=-3$ and $x=-1$. What are all values of $x,-4<x<3$. at which f is continuous but not differentiable?
(A) $x=1$
(B) $x=-2$ and $x=0$
(C) $x=-2$ and $x=1$
(D) $x=0$ and $x=1$

If $f(x)=\int_{1}^{x^{3}} \frac{1}{1+\ln t} d t$ for $x \geq 1, \quad$ then $f^{\prime}(2)=$
(a) $\frac{1}{1+\ln 2}$
(b) $\frac{12}{1+\ln 2}$
(c) $\frac{1}{1+\ln 8}$
(d) $\frac{12}{1+\ln 8}$
$f^{\prime}(x)=\frac{1}{1+\ln x^{3}} \cdot 3 x^{2}$

Find the derivative of the function

$$
f(x)=\tan ^{2}\left(\log _{3} x\right) .
$$

(a) $f^{\prime}(x)=\sec ^{4}\left(\log _{3} x\right)$
(b) $f^{\prime}(x)=\frac{2 \tan \left(\log _{3} x\right) \sec ^{2}\left(\log _{3} x\right)}{x \ln 3}$
(c) $f^{\prime}(x)=\frac{2}{x} \tan \left(\log _{3} x\right) \sec ^{2}\left(\log _{3} x\right)$
(d) $f^{\prime}(x)=\frac{\tan ^{3}\left(\log _{3} x\right)}{3} \frac{1}{x \ln 3}$

