April 2 Math 2254H sec 015H Spring 2015

Section 11.6: Absolute Convergence: the Ratio & Root Tests

Determine if the series is absolutely convergent, conditionally

convergent, or divergent.
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Examples

Use the ratio test to determine the values of t for which the series is

guaranteed to be absolutely convergent.
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Ratio Test Failure
Apply the ratio test to the known divergent series
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Ratio Test Failure
Apply the ratio test to the known convergent series
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Theorem: The Root Test

Theorem (The Root Test): Let ) a, be a series, and define the
number L by

nIL>moo AV ‘an‘ - L

If

(i) L <1, the series is absolutely convergent;

(i) L> 1, the series is divergent;

(i) L =1, the test is inconclusive.

Remark: In the case L = 1, the test truly fails as in the ratio test. The
series may be absolutely convergent, conditionally convergent, or
divergent.
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Examples

Apply the root test to show that the series is absolutely convergent.
(We get the same conclusion from noting that it is geometric.)
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A Potentially Useful Result Yooe o
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Examples

Determine if the series is absolutely convergent, conditionally
convergent, or divergent.
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Section 11.7: Strategies for Testing Series

Potentially Useful Guidelines for Analyzing a Series ) a,

X Does it have a specific type? (p-series, geometric, telescoping,
alternating)

* I you can readily see that lim,_. a, # 0, use the Divergence test.

x I an > 0 and the function f(n) = a, looks like you can integrate it
(i.e. f1 X) dx is manageable), try the integral test.

() March 31, 2015 16/28



X If it involves a rational function in n or a ratio of roots and powers of
n, a direct or limit comparison test (comparing to a p-series) might be
useful.

X If it looks very similar to a geometric series, but is not quite a
geometric series, a direct or limit comparison test to a geometric may
be useful.

X If it involves factorials or complicated products, the ratio test might
lead to the necessary conclusion.

<> Remember that the ratio test (when conclusive) determines
absolute convergence. When using the alternating series test, if a
series is found to be convergent remember to check for absolute
convergence.
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