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Section 11.7: Strategies for Testing Series

Special Series Types
I Geometric
I Telescoping
I p-Series
I Alternating

Tests
I Divergence (nth term)
I Integral
I Direct & Limit Comparison
I Alternating Series
I Ratio test
I Root test
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Examples
Determine if the series is absolutely convergent, conditionally
convergent, or divergent.

(a)
∞∑

m=0

2m

3m + 5m
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(b)
∞∑

k=1

(−3)k

k !
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(c)
∞∑

n=2

3n + 2
n −
√

2
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(d)
∞∑

n=1

(−1)n 3n
2n2 + 3
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Section 11.8: Power Series

Motivating Example: Let x be a variable (representing a real
number). Show that the series

∞∑
n=1

(x − 4)n

2n2

converges if x = 3 and diverges if x = 7.
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Power Series

Definition: A power series is a series of the form

∞∑
n=0

cn(x − a)n = c0 + c1(x − a) + c2(x − a)2 + c3(x − a)3 + · · ·

where the cn’s are (known) constants called the coefficients, x is a
variable, and a is a (known) constant called the center.

For convenience, we set (x − a)0 = 1 even in the case that x = a.

Remark: As the previous example suggests, a power series may be
convergent for some values of x and divergent for others.
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Example
Determine all value(s) of x for which the series converges.

∞∑
n=1

(x − 4)n

2n2
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Example
Determine all value(s) of x for which the series converges.

∞∑
n=1

n!xn
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