April 6 Math 2254H sec 015H Spring 2015

Section 11.7: Strategies for Testing Series

Tests

Special Series Types

- Geometric
- Telescoping
- p-Series
- Alternating
- Divergence ($n^{\text {th }}$ term)
- Integral
- Direct \& Limit Comparison
- Alternating Series
- Ratio test
- Root test

Examples
Determine if the series is absolutely convergent, conditionally convergent, or divergent.
(a)

$$
\begin{aligned}
& \sum_{m=0}^{\infty} \frac{2^{m}}{3^{m}+5^{m}} \quad \text { Ratio test } \\
& \lim _{m \rightarrow 0}\left|\frac{a_{m+1}}{a_{m}}\right|=\lim _{m \rightarrow \infty}\left|\frac{2^{(n+1}}{3^{m+1}+s^{m+1}} \cdot \frac{3^{m}+5^{n}}{2^{n}}\right| \\
& =\lim _{m \rightarrow \infty} 2\left(\frac{3^{m}+5^{m}}{3^{m+1}+s^{m+1}}\right) \cdot \frac{\frac{1}{5^{m+1}}}{\frac{1}{5^{m+1}}} \\
& =\lim _{m \rightarrow \infty} 2\left(\frac{\frac{1}{5}\left(\frac{3}{5}\right)^{m}+\frac{1}{5}\left(\frac{5}{5}\right)^{m}}{\left(\frac{3}{5}\right)^{m+1}+1}\right)=2\left(\frac{0+\frac{1}{5}}{0+1}\right)=\frac{2}{5} \\
& 0
\end{aligned}
$$

$L=\frac{2}{5}<1$ So the series is absolutely convergent.
(b) $\sum_{k=1}^{\infty} \frac{(-3)^{k}}{k!} \quad$ Ratio test

$$
\begin{gathered}
\lim _{k \rightarrow \infty}\left|\frac{a_{k+1}}{a_{k}}\right|=\lim _{k \rightarrow \infty}\left|\frac{(-3)^{k+1}}{(k+1)!} \cdot \frac{k!}{(-3)^{2^{2}}}\right| \\
=\lim _{k \rightarrow \infty}\left|\frac{-3 k!}{k!(k+1)}\right|=\lim _{k \rightarrow \infty} \frac{3}{k+1}=0 \\
L=0<1
\end{gathered}
$$

The series is absolutely convergent.
(c) $\sum_{n=2}^{\infty} \frac{3 n+2}{n-\sqrt{2}}$

Divergence Test:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} & \frac{3 n+2}{n-\sqrt{2}}=\lim _{n+\infty} \frac{3 n+2}{n-\sqrt{2}} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} \\
& =\lim _{n \rightarrow \infty} \frac{3+\frac{2}{n}}{1-\frac{\sqrt{2}}{n}}=\frac{3}{1}=3 \neq 0
\end{aligned}
$$

The series diverges.
(d) $\sum_{n=1}^{\infty}(-1)^{n} \frac{3 n}{2 n^{2}+3} \quad$ Alt. Series Test. $b_{n}=\frac{3 n}{2 n^{2}+3}$
ii) $\lim _{n \rightarrow \infty} \frac{3 n}{2 n^{2}+3}=\lim _{n \rightarrow \infty} \frac{3 n}{2 n^{2}+3} \cdot \frac{1}{\frac{n^{2}}{\frac{1}{n^{2}}}}$

$$
=\lim _{n \rightarrow \infty} \frac{\frac{3}{n}}{2+3 / n^{2}}=0
$$

i) Need to show $b_{n+1} \leq b_{n}$

Lu $f(x)=\frac{3 x}{2 x^{2}+3}, f^{\prime}(x)=\frac{3\left(2 x^{2}+3\right)-3 x(4 x)}{\left(2 x^{2}+3\right)^{2}}$

$$
f^{\prime}(x)=\frac{-6 x^{2}+9}{\left(2 x^{2}+3\right)^{2}}=\frac{-6\left(x^{2}-\frac{3}{2}\right)}{\left(2 x^{2}+3\right)^{2}}
$$

$f^{\prime}(x)<0$ for $x>\sqrt{\frac{3}{2}} \quad$ s. $\quad b_{n+1} \leqslant b_{n}$ for $n \geqslant 2$

The series converges by the alt. Series test.
Consider $\sum_{n=1}^{\infty}\left|\frac{(-1)^{n} 3 n}{2 n^{2}+3}\right|=\sum_{n=1}^{\infty} \frac{3 n}{2 n^{2}+3}$
Int eyre test: $f(x)=\frac{3 x}{2 x^{2}+3}$,
f is positive, continuous, and
decuasing (for $x>\sqrt{\frac{3}{2}}$).

$$
\begin{gathered}
\int_{1}^{\infty} \frac{3 x}{2 x^{2}+3} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{3 x}{2 x^{2}+3} d x \\
=\left.\lim _{t \rightarrow \infty} \frac{3}{4} \ln \left|2 x^{2}+3\right|\right|_{1} ^{t} \\
=\lim _{t \rightarrow \infty}\left(\frac{3}{4} \ln \left|2 t^{2}+3\right|-\frac{3}{4} \ln \left|2 \cdot 1^{2}+3\right|\right) \\
=\infty
\end{gathered}
$$

The integrd, hence $\sum_{n=1}^{\infty} \frac{3 n}{2 n^{2}+2}$ diverge.

$$
\begin{aligned}
\int \frac{3 x}{2 x^{2}+3} d x & \begin{array}{l}
u
\end{array}=2 x^{2}+3 \\
d u & =4 x d x \\
\frac{1}{4} d u & =x d x \\
=\frac{3}{4} \int \frac{d u}{u}= & \frac{3}{4} \ln |u|+C \\
& =\frac{3}{4} \ln \left|2 x^{2}+3\right|+C
\end{aligned}
$$

$\sum_{n=1}^{\infty} \frac{(-1)^{n} 3 n}{2 n^{2}+3}$ is conditionals convergent,

Section 11.8: Power Series
Motivating Example: Let x be a variable (representing a real number). Show that the series

$$
\sum_{n=1}^{\infty} \frac{(x-4)^{n}}{2 n^{2}}
$$

converges if $x=3$ and diverges if $x=7$.
when $x=3$, the series belomes

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{(3-4)^{n}}{2 n^{2}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2 n^{2}} \\
& \sum_{n=1}^{\infty}\left|\frac{(-1)^{n}}{2 n^{2}}\right|=\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^{2}}
\end{aligned}
$$

a convergent p-series $p=2>1$

So when $x=3$, the series is absolutely convergent.
If $x=7$, the series is $\sum_{n=1}^{\infty} \frac{(7-4)^{n}}{2 n^{2}}=\sum_{n=1}^{\infty} \frac{3^{n}}{2 n^{2}}$
Ratio test: $\lim _{n \rightarrow \infty}\left|\frac{3^{n+1}}{2(n+1)^{2}} \cdot \frac{2 n^{2}}{3^{n}}\right|=\lim _{n \rightarrow \infty} 3\left(\frac{n}{n+1}\right)^{2}$

$$
=3>1
$$

The series diverges when $x=7$.

Power Series

Definition: A power series is a series of the form

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\cdots
$$

where the c_{n} 's are (known) constants called the coefficients, x is a variable, and a is a (known) constant called the center.

For convenience, we set $(x-a)^{0}=1$ even in the case that $x=a$.
Remark: As the previous example suggests, a power series may be convergent for some values of x and divergent for others.

Example
Determine all values) of x for which the series converges.
will apply the ratio test is $x \neq 4$

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{(x-4)^{n}}{2 n^{2}} \\
& \quad \lim _{n \rightarrow \infty}\left|\frac{(x-4)^{n+1}}{2(n+1)^{2}} \cdot \frac{2 n^{2}}{(x-4)^{n}}\right| \\
& \quad=\lim _{n \rightarrow \infty}|x-4| \frac{n^{2}}{(n+1)^{2}}=|x-4| \text { so } L=|x-4|
\end{aligned}
$$

The series converges absolutely if $|x-4|<1$

$$
|x-4|<1 \quad \Rightarrow \quad-1<x-4<1
$$

$$
\Rightarrow \quad 3<x<5
$$

we know the series converge absolute in if $x=3$. If $x=5$, the surfs is $\sum_{n=1}^{\infty} \frac{(5-4)^{n}}{2 n^{2}}=\sum_{n=1}^{\infty} \frac{1}{2 n^{2}}$ which is absolutely convergent.

The series is absolutely convergut if

$$
3 \leq x \leq 5
$$

Note if $x>5$ or $x<3$

$$
L=|x-4|>1
$$

Example
Determine all values) of x for which the series converges.

$$
\begin{aligned}
& \sum_{n=1}^{\infty} n!x^{n} \quad \text { Ratio Test: for } \quad x \neq 0 \\
& \lim _{n+\infty}\left|\frac{(n+1)!x^{n+1}}{n!\cdot x^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{n^{\prime} \cdot(n+1) x}{n!}\right| \\
& =\lim _{n \rightarrow \infty} \mid x \backslash(n+1)=\infty \quad L=\infty \\
& L>1 \text { for all } x \neq 0
\end{aligned}
$$

The series convergls if $x=0$ and diverges for all red $\quad x \neq 0$.

