## April 7 Math 2254H sec 015H Spring 2015

## Section 11.8: Power Series

Definition: A power series is a series of the form

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\cdots
$$

where the $c_{n}$ 's are (known) constants called the coefficients, $x$ is a variable, and $a$ is a (known) constant called the center.

For convenience, we set $(x-a)^{0}=1$ even in the case that $x=a$.

Remark: A power series converges at its center to $c_{0}$. For other values of $x$ is may or may not converge.

## Examples

Example 1: We found that the series
$\sum_{n=1}^{\infty} \frac{(x-4)^{n}}{2 n^{2}}$
coverges absolutely if $3 \leq x \leq 5$ and diverges if $x>5$ or $x<3$.

Example 2: We found that the series
$\sum_{n=1}^{\infty} n!x^{n}$
coverges at it center $x=0$ and diverges if $x \neq 0$.

Example
Determine all values) of $x$ for which the series converges.

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{4}}{6!}+\ldots
$$

Ratio test : $x \neq 0$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1} x^{2(n+1)}}{(2(n+1))!} \cdot \frac{(2 n)!}{(-1)^{n} x^{2 n}}\right| \\
= & \lim _{n \rightarrow \infty}\left|\frac{x^{2 n} \cdot x^{2}}{(2 n+2)!} \cdot \frac{(2 n)!}{x^{2 n}}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \frac{x^{2}(2 n)!}{(2 n)!(2 n+1)(2 n+2)} \\
& =\lim _{n \rightarrow \infty} \frac{x^{2}}{(2 n+1)(2 n+2)}=0 \quad L=0<1
\end{aligned}
$$

for all real $x$

This series converge for all real $x$.

## Theorem on Power Series Convergence

Theorem: For the power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$, there are three possibilities:
(i) The series converges at the center $x=a$ and nowhere else.
(ii) The series converges for all real $x$; or
(iii) There exists a positive number $R$ such that the series converges if $|x-a|<R$ and diverges if $|x-a|>R$.

In the third case, $R$ is called the radius of convergence.

## Case (iii): Interval of Convergence

If there is a finite radius of convergence $R$, then the series converges for $|x-a|<R$. That is, for

$$
a-R<x<a+R
$$

Behavior at the end points $x=a-R$ or $x=a+R$ varies from series to series. There are four possible cases. The interval of convergence may be any one of the following:

$$
\begin{gathered}
\text { (i) } a-R<x<a+R, \quad \text { (ii) } a-R \leq x<a+R, \\
\text { (iiii) } a-R<x \leq a+R, \quad \text { or } \quad \text { (iv) } a-R \leq x \leq a+R .
\end{gathered}
$$

Example
Determine the radius and interval of convergence of the power series. (If it converges for all real $x$, just set $R=\infty$.)

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{n(x+1)^{n}}{4^{n}} \quad \text { Ratio test : } \quad x \neq-1 \\
& \quad \lim _{n \rightarrow \infty}\left|\frac{(n+1)(x+1)^{n+1}}{4^{n+1}} \cdot \frac{4^{n}}{n(x+1)^{n}}\right| \\
& =\lim _{n \rightarrow \infty} \frac{n+1}{4 n}|x+1|=\lim _{n \rightarrow \infty} \frac{|x+1|}{4}\left(1+\frac{1}{n}\right)=\frac{|x+1|}{4}
\end{aligned}
$$

The seines converses absilatedy if

$$
\frac{|x+1|}{4}<1 \Rightarrow|x+1|<4
$$

$$
\begin{gathered}
R=4 . \quad|x+1|<4 \Rightarrow-4<x+1<4 \\
\Rightarrow \quad-5<x<3
\end{gathered}
$$

Check the end points:

$$
\begin{aligned}
& x=-5 \quad \sum_{n=1}^{\infty} \frac{n(-5+1)^{n}}{4^{n}}=\sum_{n=1}^{\infty} \frac{n(-4)^{n}}{4^{n}} \\
& \\
& =\sum_{n=1}^{\infty} n\left(\frac{-4}{4}\right)^{n}=\sum_{n=1}^{\infty}(-1)^{n} n
\end{aligned}
$$

This is divergent by the divengen $u$ test.

$$
x=3 \quad \sum_{n=1}^{\infty} \frac{n(3+1)^{n}}{4^{n}}=\sum_{n=1}^{\infty} \frac{n 4^{n}}{4^{n}}=\sum_{n=1}^{\infty} n
$$

Also divergent by the divengen $u$ test.

The radius of convergence is 4. And the interval is $(-5,3)$.

Example
Determine the radius and interval of convergence of the power series.
(If it converges for all real $x$, just set $R=\infty$.)

$$
\begin{array}{r}
\sum_{n=1}^{\infty} \frac{2^{n} x^{n}}{\sqrt{n}} \quad \quad \quad \text { Ratio test : } \quad x \neq 0 \\
\lim _{n \rightarrow \infty}\left|\frac{2^{n+1} x^{n+1}}{\sqrt{n+1}} \cdot \frac{\sqrt{n}}{2^{n} x^{n}}\right| \\
=\lim _{n \rightarrow \infty} 2|x| \sqrt{\frac{n}{n+1}}=2|x|
\end{array}
$$

The series converges absolutely if $2|x|<1$

$$
|x|<\frac{1}{2} \Rightarrow R=\frac{1}{2}
$$

$$
-\frac{1}{2}<x<\frac{1}{2}
$$

End point chide:

$$
\begin{aligned}
& \text { d point chicle: } \\
& \begin{array}{r}
\sum_{n=1}^{\infty} \frac{2^{n}\left(-\frac{1}{2}\right)^{n}}{\sqrt{n}}=\sum_{n=1}^{\infty} \frac{\left(2 \cdot \frac{-1}{2}\right)^{n}}{\sqrt{n}} \\
\\
=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}} \quad b_{n}=\frac{1}{\sqrt{n}}
\end{array}
\end{aligned}
$$

Alt sames test: $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0$

$$
b_{n+1}=\frac{1}{\sqrt{n+1}}<\frac{1}{\sqrt{n}}=b_{n}
$$

This converges by the alt. Series test.

$$
x=\frac{1}{2} \quad \sum_{n=1}^{\infty} \frac{2^{n}\left(\frac{1}{2}\right)^{n}}{\sqrt{n}}=\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}
$$

a divergent $p$-series $p=\frac{1}{2}<1$

The radius of convergence is $\frac{1}{2}$.
The interval is $\left[-\frac{1}{2}, \frac{1}{2}\right)$.
The convergence (C $x=\frac{-1}{2}$ is Condition d.

Example
Determine the radius and interval of convergence of the power series. (If it converges for all real $x$, just set $R=\infty$.)

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{x^{n}}{1 \cdot 3 \cdot 5 \cdots(2 n+1)} \quad \text { Ratio test : } x \neq 0 \\
& \lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{1 \cdot 3 \cdot 5 \cdot \cdots(2(n+1)+1)} \cdot \frac{1 \cdot 3 \cdot 5 \cdots(2 n+1)}{x^{n}}\right| \\
& \lim _{n \rightarrow \infty} \left\lvert\, \frac{x}{1 \cdot 3 \cdot 5 \cdots(2 n+1)(2 n+3)} \cdot(1 \cdot 3 \cdot 5 \cdots(2 n+1))\right.
\end{aligned}
$$

$$
=\lim _{n \rightarrow \infty} \frac{|x|}{2 n+3}=0
$$

$$
L=0<1
$$

for all red
$x$

The radius is $\infty$. The interval is

$$
(-\infty, \infty)
$$

