April 10 MATH 1112 sec. 54 Spring 2019

Section 7.5: Trigonometric Equations

In this section, we wish to consider **conditional** equations involving trigonometric functions. Our goal will be to find a solution set.

Some examples of trigonometric equations include

$$2\cos(x)-1=0,$$
 $\sin\theta\cos\theta+\sin\theta=0,$ $2\tan^2 x-\tan x-1=0,$

$$\csc 2\theta = \sec 2\theta$$
, $\tan^2(3x) = 3$, and so forth.

We'll use trigonometric identities, our knowledge of some trig values, and inverse trigonometric functions as needed.

April 8, 2019 1 / 54

A Couple of Simple Examples

Find all possible solutions of the equation $2\cos(x) - 1 = 0$.

well start with some algebra. Isolate Cos(x),

$$\begin{aligned} & \mathcal{L}_{\mathsf{GS}}(\mathsf{x}) - | = \mathsf{O} \quad \Rightarrow \quad 2 \, \mathcal{L}_{\mathsf{GS}}(\mathsf{x}) = \mathsf{I} \quad \Rightarrow \\ & \mathcal{L}_{\mathsf{GS}}(\mathsf{x}) = \mathsf{I} \\ \end{aligned}$$

There are infinitely vary solutions because the cosine is periodic. Let's Identify the solutions x in the interval $[0, 2\pi)$ -i.e. in one "rotation.".

$$Cosx = \frac{1}{2}$$

The cosine is positive in guodrants I and TV. so there are two solutions in [0,27]. In gradrant I we have X = The. In gradrant IV we have X= 5TT. If we odd or subtract any integer multiple of 211, the result is no ther solution.

So all solutions to 2605x -1=0 can be expressed as X= = + 2TTK 00 X= 5 + 2πk for $k = 0, \pm 1, \pm 2, ...$ $k=0, \pm 1, \pm 2, \dots$ can be written as $k \in \mathbb{Z}$ "k is in the integers" E 990

April 8, 2019 4 / 54

Graphical Representation

Figure: The solutions of $2\cos(x) - 1 = 0$ correspond to intersections of the curves $y = \cos x$ and $y = \frac{1}{2}$. Intersections continue to the left and right every 2π units.

• • • • • • • • • • • • •

Another Simple Example

Find all possible solutions of the equation sin(x) = cos(x).

We can write the equation in terms of one
trig function.
If
$$Gos(x) \neq 0$$
, we can divide by $Gosx$
 $Sinx = Gosx \Rightarrow \frac{Sinx}{Gorx} = \frac{Gorx}{Gorx}$
 $\tan x = 1$

* IF Cosx=0, then Sinx=1 or Sinx=-1

For X in E0,2π) there are 2 solutions
in quadrants I and III.
The quadrant I solution is
$$X = \frac{\pi}{4}$$
.
The quadrant III solution is $X = \frac{5\pi}{4}$
So all solutions are given by
 $X = \frac{\pi}{4} + 2\pi k$ or $X = \frac{5\pi}{4} + 2\pi k$
for $k = 0, \pm 1, \pm 2$,...
Be cause the priod of trux is π ,

April 8, 2019 7 / 54

these can be combined as

Graphical Representation

Figure: The solutions of sin(x) = cos(x) correspond to intersections of the curves y = cos x and y = sin(x). Intersections continue to the left and right every 2π units.

A General Observation

When solving more complicated trigonometric equations, we will try to rewrite the problem in the form of **one or more** equations that look like

One Trig Function = One Number

We typically determine solution(s) in one period, and then extend those solutions if required.

April 8, 2019 10 / 54

イロト 不得 トイヨト イヨト 二日