April 10 MATH 1112 sec. 54 Spring 2019

Section 7.5: Trigonometric Equations

In this section, we wish to consider conditional equations involving trigonometric functions. Our goal will be to find a solution set.

Some examples of trigonometric equations include
$2 \cos (x)-1=0, \quad \sin \theta \cos \theta+\sin \theta=0, \quad 2 \tan ^{2} x-\tan x-1=0$,

$$
\csc 2 \theta=\sec 2 \theta, \quad \tan ^{2}(3 x)=3, \quad \text { and so forth. }
$$

We'll use trigonometric identities, our knowledge of some trig values, and inverse trigonometric functions as needed.

A Couple of Simple Examples
Find all possible solutions of the equation $2 \cos (x)-1=0$.
well start with some algebra. Isolate $\cos (x)$,

$$
\begin{gathered}
2 \cos (x)-1=0 \Rightarrow 2 \cos (x)=1 \Rightarrow \\
\cos (x)=\frac{1}{2}
\end{gathered}
$$

There are infinitely many solutions because the cosine is periodic. Let's identify the solutions x in the inter vel $[0,2 \pi)$-ie in one "rotation.".

$$
\cos x=\frac{1}{2}
$$

The cosine is positive in quadrants I and IV. So the are two solutions in $[0,2 \pi)$. In grodront I we have $x=\frac{\pi}{3}$. In quadrant \mathbb{V} we have $x=\frac{5 \pi}{3}$.

If we odd or subtract any integer multiple of 2π, the result is another solution.

So all solutions to $2 \cos x-1=0$ can be expressed as

$$
x=\frac{\pi}{3}+2 \pi k
$$

or

$$
\begin{aligned}
& x=\frac{5 \pi}{3}+2 \pi k \\
& \quad \text { for } k=0, \pm 1, \pm 2, \ldots
\end{aligned}
$$

$k=0, \pm 1, \pm 2, \ldots$ can be written as $k \in \mathbb{Z}$ " k is in the integers"

Graphical Representation

Figure: The solutions of $2 \cos (x)-1=0$ correspond to intersections of the curves $y=\cos x$ and $y=\frac{1}{2}$. Intersections continue to the left and right every 2π units.

Another Simple Example
Find all possible solutions of the equation $\sin (x)=\cos (x)$.
we con write the equation in terns of one trig function.

If $\cos (x) \neq 0$, we em divide by $\cos x$

$$
\begin{aligned}
& \sin x=\cos x \Rightarrow \frac{\sin x}{\cos x}=\frac{\cos x}{\cos x} \\
& \tan x=1
\end{aligned}
$$

* If $\cos x=0$, then $\sin x=1$ or $\sin x=-1$

For x in $[0,2 \pi)$ the ere 2 solutions in quadrants I and III.

The quadrant I solution is $x=\frac{\pi}{4}$.
The quadrant III solution is $x=\frac{5 \pi}{4}$
So all solutions are given by

$$
x=\frac{\pi}{4}+2 \pi k \quad \text { or } \quad x=\frac{5 \pi}{4}+2 \pi k
$$

for $k=0, \pm 1, \pm 2, \ldots$

Because the paid of $\tan x$ is π,

These can be combined as

$$
x=\frac{\pi}{4}+k \pi \text { for } k=0, \pm 1, \pm 2, \ldots
$$

Graphical Representation

Figure: The solutions of $\sin (x)=\cos (x)$ correspond to intersections of the curves $y=\cos x$ and $y=\sin (x)$. Intersections continue to the left and right every 2π units.

A General Observation

When solving more complicated trigonometric equations, we will try to rewrite the problem in the form of one or more equations that look like

$$
\text { One Trig Function }=\text { One Number }
$$

We typically determine solution(s) in one period, and then extend those solutions if required.

