April 10 Math 2306 sec. 53 Spring 2019

Section 15: Shift Theorems

Theorem (translation in s)
Suppose .Z {f(t)} = F(s). Then for any real number a

£ {e%f(t)} = F(s— a).

Theorem (translation in )
If F(s) = Z{f(t)} and a > 0, then

L{f(t—a)%(t—a)} = e *F(s).

Recall that the unit step function was defined as

<
%(t—a)—{ (1)’ ?;;<a fora> 0
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A Couple of Useful Results

Another formulation of this translation theorem is

(1) Z{g(t)%(t-a)} = e~*Z{g(t+a)}.
Since q (€)= %(({—-fa\) 0“\

Example: Find #{cost % (t— g)} {&S (+% }
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A Couple of Useful Results

The inverse form of this translation theorem is
(2) 2 e #F(s)} = f(t—-a) (t—a).

Lohere <p(€) = il { F(S\}

—2s
Example: Find £ ~! {(i+1)}
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Section 16: Laplace Transforms of Derivatives and
IVPs

Suppose f has a Laplace transform and that f is differentiable on

[0, o). Obtain an expression for the Laplace tranform of /(). (Assume
f is of exponential order ¢ for some c.)
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Transforms of Derivatives

If £ {f(t)} = F(s), we have Z {f'(t)} = sF(s) — f(0). We can use this
relationship recursively to obtain Laplace transforms for higher
derivatives of f.

For example

2{f"()} = sL{f(1)}-F(0)
= s(sF(s) - f(0)) — f(0)

= s2F(s) — sf(0) — f'(0)
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Transforms of Derivatives

For y = y(t) defined on [0, c0) having derivatives y’, y” and so forth, if

Z{y(t)} = Y(s),

then 4
7 {d{} — s¥(s) — y(0),

&z { d”y} =5"Y(s) =" y(0) = s"2y/(0) — - - — y""(0).
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Differential Equation
For constants a, b, and c, take the Laplace transform of both sides of
the equation

ay" +by' +cy =9g(t), y(0)=y, y(0)=y
el ol Ml Lra o of Bod Sibio of e ODF

ii 0\\3" + bxa‘ + C\a} = jfg[&;}‘

b iybd Do~ yisld= GOw

a&{\a“k *L’i{\g\} + L E\awj‘ ifﬁ}
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Solving IVPs

Apply Laplace

Transform

/ Solution
y(t)
(obtained unknown
from ¥(s)) ¥(s) /
/Solution
Y(s)
Take Inverse Laplace (obtained
Transform

by
algebra)

Figure: We use the Laplace transform to turn our DE into an algebraic

equation. Solve this transformed equation, and then trans;orm back.
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General Form

We get
Q(s) , G(s)
Y(s) =
9= B " P(s)
where Q is a polynomial with coefficients determined by the initial
conditions, G is the Laplace transform of g(t) and P is the
characteristic polynomial of the original equation.

z1 { ggzg } is called the zero input response,

7 { ggzi } is called the zero state response.
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