April 10 Math 2306 sec. 54 Spring 2019

Section 15: Shift Theorems

Theorem (translation in s)
Suppose $\mathscr{L}\{f(t)\}=F(s)$. Then for any real number a

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}=F(s-a) .
$$

Theorem (translation in t)
If $F(s)=\mathscr{L}\{f(t)\}$ and $a>0$, then

$$
\mathscr{L}\{f(t-a) \mathscr{U}(t-a)\}=e^{-a s} F(s) .
$$

Recall that the unit step function was defined as

$$
\mathscr{U}(t-a)=\left\{\begin{array}{ll}
0, & 0 \leq t<a \\
1, & t \geq a
\end{array} \quad \text { for } a>0\right.
$$

A Couple of Useful Results
Another formulation of this translation theorem is
(1) $\mathscr{L}\{g(t) \mathscr{U}(t-a)\}=e^{-a s} \mathscr{L}\{g(t+a)\}$.

Since $g(t)=g((t+a)-a)$
Example: Find $\mathscr{L}\left\{\cos t \mathscr{U}\left(t-\frac{\pi}{2}\right)\right\}=e^{-\frac{\pi}{2} s} \mathscr{L}\left\{\cos \left(t+\frac{\pi}{2}\right)\right\}$

Note that

$$
\begin{aligned}
\cos \left(t+\frac{\pi}{2}\right) & =\cos t \cos \frac{\pi}{2}-\sin t \sin \pi / 2 \\
& =\cos t(0)-\sin t(1) \\
& =-\sin t
\end{aligned}
$$

Then

$$
\begin{aligned}
\mathscr{L}\{\cos t u(t-\pi / 2)\} & =e^{-\frac{\pi}{2} s} \mathcal{L}\left\{\cos \left(t+\frac{\pi}{2}\right)\right\} \\
& =e^{-\frac{\pi}{2} s} \mathcal{L}\{-\sin t\} \\
& =-e^{-\frac{\pi}{2} s} \mathcal{L}\{\sin t\} \\
& =-e^{-\frac{\pi}{2} s}\left(\frac{1}{s^{2}+1^{2}}\right) \\
& =\frac{-e^{-\frac{\pi}{2} s}}{s^{2}+1}
\end{aligned}
$$

A Couple of Useful Results
The inverse form of this translation theorem is
(2) $\mathscr{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) \mathscr{U}(t-a)$.
where $\mathscr{L}^{-1}\{F(s)\}=f(t)$
Example: Find $\mathscr{L}^{-1}\left\{\frac{e^{-2 s}}{s(s+1)}\right\}$
we need to know $\mathcal{L}^{-1}\left\{\frac{1}{s(s+1)}\right\}$ Doing a particle
fraction decamp

$$
\begin{array}{rl}
\frac{1}{s(s+1)}=\frac{A}{s}+\frac{B}{s+1} \Rightarrow \quad 1 & =A(s+1)+B s \\
\text { set } s & s=0 \quad 1=A(1) \quad A=1 \\
s & =-1 \quad 1=B(-1) \quad B=-1
\end{array}
$$

Hence

$$
\begin{aligned}
& \mathcal{L}^{-1}\left\{\frac{1}{s(s+1)}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{s}\right\}-\mathcal{L}^{-1}\left\{\frac{1}{s+1}\right\} \\
&=1-e^{-t} \leftarrow \text { this is } f(t) \\
& \mathcal{L}^{-1}\left\{\frac{e^{-2 s}}{s(s+1)}\right\}=\left(1-e^{-(t-2)}\right) u(t-2) \\
& \underbrace{f(t-2)}_{\text {this is }} u(t-2)
\end{aligned}
$$

Section 16: Laplace Transforms of Derivatives and IVPs
Suppose f has a Laplace transform and that f is differentiable on $[0, \infty)$. Obtain an expression for the Laplace tranform of $f^{\prime}(t)$. (Assume f is of exponential order c for some c.)

$$
\begin{aligned}
& \mathscr{L}\left\{f^{\prime}(t)\right\}=\int_{0}^{\infty} e^{-s t f^{\prime}}(t) d t \\
& \text { Integote by parts } \\
& u=e^{-s t} \quad d v=f^{\prime}(t) d t \\
& =\left.e^{-s t} f(t)\right|_{0} ^{\infty}-\int_{0}^{\infty}-s^{-s t} f(t) d t \\
& d u=-s e^{-5 t} d t \quad v=f(t) \\
& =\left(0-e^{0} f(0)\right)+s \int_{0}^{\infty} e^{-s t} f(t) d t \\
& =s \mathscr{L}\{f(t)\}-f(0)
\end{aligned}
$$

Transforms of Derivatives

If $\mathscr{L}\{f(t)\}=F(s)$, we have $\mathscr{L}\left\{f^{\prime}(t)\right\}=s F(s)-f(0)$. We can use this relationship recursively to obtain Laplace transforms for higher derivatives of f.

For example

$$
\begin{aligned}
\mathscr{L}\left\{f^{\prime \prime}(t)\right\} & =s \mathscr{L}\left\{f^{\prime}(t)\right\}-f^{\prime}(0) \\
& =s(s F(s)-f(0))-f^{\prime}(0) \\
& =s^{2} F(s)-s f(0)-f^{\prime}(0)
\end{aligned}
$$

Transforms of Derivatives

For $y=y(t)$ defined on $[0, \infty)$ having derivatives $y^{\prime}, y^{\prime \prime}$ and so forth, if

$$
\mathscr{L}\{y(t)\}=Y(s)
$$

then

$$
\begin{gathered}
\mathscr{L}\left\{\frac{d y}{d t}\right\}=s Y(s)-y(0) \\
\mathscr{L}\left\{\frac{d^{2} y}{d t^{2}}\right\}=s^{2} Y(s)-s y(0)-y^{\prime}(0) \\
\vdots \\
\mathscr{L}\left\{\frac{d^{n} y}{d t^{n}}\right\}=s^{n} Y(s)-s^{n-1} y(0)-s^{n-2} y^{\prime}(0)-\cdots-y^{(n-1)}(0)
\end{gathered}
$$

Differential Equation
For constants a, b, and c, take the Laplace transform of both sides of the equation

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t), \quad y(0)=y_{0}, \quad y^{\prime}(0)=y_{1}
$$

well take the Loploce trans for of the ODE

$$
\begin{aligned}
& \mathcal{L}\left\{a y^{\prime \prime}+b y^{\prime}+c y\right\}=\mathcal{L}\{g(t)\} \\
& \text { Let } \mathcal{L}\{y(t)\}=Y(s) \text { and } \mathcal{L}\{g(t)\}=G(s) \\
& a \mathcal{Z}\left\{y^{\prime \prime}\right\}+b \mathcal{L}\left\{y^{\prime}\right\}+c \mathcal{L}\{y\}=\mathcal{L}\{g\} \\
& a\left(s^{2} Y(0)-s y(0)-y^{\prime}(0)\right)+b(s Y(s)-y(0))+c Y(s)=G(s)
\end{aligned}
$$

well isolate $Y(s)$.

$$
\begin{gathered}
a s^{2} Y(s)-a s y_{0}-a y_{1}+b s Y(s)-b y_{0}+c Y(s)=G(s) \\
\left(a s^{2}+b s+c\right) Y(s)-a y_{0} s-a b_{1}-b y_{0}=G(s)
\end{gathered}
$$

The orisind ODE is

$$
a_{y}^{\prime \prime}+b_{y}^{\prime}+c y=g(t)
$$

$a s^{2}+b s+c$ is the characteristic polynomial

$$
\begin{array}{r}
\left(a s^{2}+b s+c\right) Y(s)=a y_{0} s+a y_{1}+b y_{0}+G(s) \\
Y(s)=\frac{a y_{0} s+a b_{1}+b y_{0}}{a s^{2}+b s+c}+\frac{G(s)}{a s^{2}+b s+c}
\end{array}
$$

The solution to the IVP is

$$
y(t)=\mathcal{L}^{-1}\{Y(s)\}
$$

Solving IVPs

Figure: We use the Laplace transform to turn our DE into an algebraic equation. Solve this transformed equation, and then transform back.

General Form

We get

$$
Y(s)=\frac{Q(s)}{P(s)}+\frac{G(s)}{P(s)}
$$

where Q is a polynomial with coefficients determined by the initial conditions, G is the Laplace transform of $g(t)$ and P is the characteristic polynomial of the original equation.
$\mathscr{L}^{-1}\left\{\frac{Q(s)}{P(s)}\right\} \quad$ is called the zero input response,
and
$\mathscr{L}^{-1}\left\{\frac{G(s)}{P(s)}\right\} \quad$ is called the zero state response.

