April 10 Math 2306 sec. 60 Spring 2019

Section 15: Shift Theorems

Theorem (translation in *s*)

Suppose $\mathscr{L} \{f(t)\} = F(s)$. Then for any real number a $\mathscr{L} \{e^{at}f(t)\} = F(s-a).$

Theorem (translation in *t*) If $F(s) = \mathscr{L}{f(t)}$ and a > 0, then $\mathscr{L}{f(t-a)\mathscr{U}(t-a)} = e^{-as}F(s).$

Recall that the unit step function was defined as

$$\mathscr{U}(t-a) = \begin{cases} 0, & 0 \le t < a \\ 1, & t \ge a \end{cases} \quad \text{for } a > 0$$

April 8, 2019 1 / 33

A Couple of Useful Results

Another formulation of this translation theorem is

(1)
$$\mathscr{L}{g(t)\mathscr{U}(t-a)} = e^{-as}\mathscr{L}{g(t+a)}.$$

Because $g(t) = g((t+a) - a)$
Example: Find $\mathscr{L}{\cos t \mathscr{U}\left(t - \frac{\pi}{2}\right)} = e^{-\frac{\pi}{2}s} \mathscr{U}{c_{ss}\left(t + \frac{\pi}{2}\right)}$

Ucil use the sum of angles formula

$$Gos(t+\frac{T}{2}) = Gost Gos T/2 - Sint Sin T/2$$

= Gost ·O - Sint · 1 = - Sint

э

イロト イヨト イヨト イヨト

So $\chi \left\{ cos + u(t - T/z) \right\} = e^{\frac{T}{2}s} \chi \left\{ a_s \left(t + \frac{T}{2} \right) \right\}$ $= e^{-\frac{\pi}{2}s} \mathcal{J}\{-s_{in}t\}$ = - p^{TS} yEsint} -1-5 $= -e^{-\frac{\pi}{2}s}\left(\frac{1}{s^2+1^2}\right) = -\frac{-e}{s^2+1}$

A Couple of Useful Results

The inverse form of this translation theorem is

(2)
$$\mathscr{L}^{-1} \{ e^{-as} F(s) \} = f(t-a) \mathscr{U}(t-a).$$

where $\mathscr{J} \{ F(s) \} = f(t)$
Example: Find $\mathscr{L}^{-1} \{ \frac{e^{-2s}}{s(s+1)} \}$
We need to find $\mathscr{J} \{ \frac{1}{s(s+1)} \}$. Start with
porticle fractions
 $\frac{1}{s(s+1)} = \frac{A}{s} + \frac{B}{s+1} \Rightarrow [= A(s+1) + Bs]$
Set $s=0$ $[= A(1) \Rightarrow A=1]$
 $s=-1$ $[= B(-1) \Rightarrow B=-1]$
 $s=-1$ $[= B(-1) \Rightarrow B=-1]$
April 8, 2019

4/33

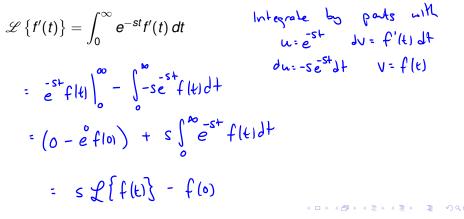
so
$$\chi'\left(\frac{1}{S(S+1)}\right) = \chi'\left(\frac{1}{S}\right) - \chi'\left(\frac{1}{S+1}\right)$$

 $= 1 - e^{-t}$
Here if $F(S) = \frac{1}{S(S+1)}$ then $f(t) = 1 - e^{t}$
 $\chi'\left(\frac{e^{2S}}{S(S+1)}\right) = (1 - e^{-(t-2)})\mathcal{U}(t-2)$
rock $f(t-2)\mathcal{U}(t-2)$

▲ □ ▶ < ⓓ ▶ < ≧ ▶ < ≧ ▶ < ≧ ▶ < ≧ > ○ < ○
 April 8, 2019 5 / 33

Section 16: Laplace Transforms of Derivatives and IVPs

Suppose *f* has a Laplace transform and that *f* is differentiable on $[0, \infty)$. Obtain an expression for the Laplace transform of f'(t). (Assume *f* is of exponential order *c* for some *c*.)



Transforms of Derivatives

If $\mathscr{L} \{f(t)\} = F(s)$, we have $\mathscr{L} \{f'(t)\} = sF(s) - f(0)$. We can use this relationship recursively to obtain Laplace transforms for higher derivatives of *f*.

For example

$$\mathcal{L} \{ f''(t) \} = S\mathcal{L} \{ f'(t) \} - f'(0)$$
$$= S(SF(S) - f(0)) - f'(0)$$
$$= S^2F(S) - Sf(0) - f'(0)$$

April 8, 2019 9 / 33

Transforms of Derivatives

For y = y(t) defined on $[0, \infty)$ having derivatives y', y'' and so forth, if

 $\mathscr{L}\left\{ \mathbf{y}(t)\right\} =\mathbf{Y}(\mathbf{s}),$

then

$$\mathscr{L}\left\{\frac{dy}{dt}\right\} = sY(s) - y(0),$$
$$\mathscr{L}\left\{\frac{d^2y}{dt^2}\right\} = s^2Y(s) - sy(0) - y'(0),$$
$$\vdots$$
$$\mathscr{L}\left\{\frac{d^ny}{dt^n}\right\} = s^nY(s) - s^{n-1}y(0) - s^{n-2}y'(0) - \dots - y^{(n-1)}(0).$$

April 8, 2019 10 / 33

Differential Equation

For constants *a*, *b*, and *c*, take the Laplace transform of both sides of the equation

$$ay'' + by' + cy = g(t), \quad y(0) = y_0, \quad y'(0) = y_1$$

we take the Loplace trans form of both sides of the ODE.

$$d \{ay'' + by' + cy\} = d \{g[t]\}.$$
will let $d \{g[t]\} = G(s)$ and $d \{y''\}$.

$$ad \{y''\} + bd \{y'\} + cd \{y\} = G(s)$$
 and $d \{y''\} = Y(s)$

$$ad \{y''\} + bd \{y'\} + cd \{y\} = d \{g\}$$

$$a(s^2Y(s) - sy(o) - y'(o)) + b(sY(s) - y(o)) + cY(s) = G(s)$$

April 8, 2019 11 / 33

$$(a_{s}^{2}+b_{s}+c)Y_{(s)} - a_{y_{0}}s - a_{y_{1}} - b_{y_{0}} = G(s)$$

< □ ト < □ ト < 三 ト < 三 ト ミ の へ ○ April 8, 2019 12 / 33

$$Y(s) = \frac{a_{bos} + a_{b} + b_{b}}{a_{s}^{2} + b_{s} + c} + \frac{G(s)}{a_{s}^{2} + b_{s} + c}$$

Solving IVPs

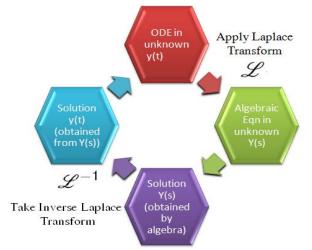


Figure: We use the Laplace transform to turn our DE into an algebraic equation. Solve this transformed equation, and then transform back.

General Form

We get

$$Y(s) = rac{Q(s)}{P(s)} + rac{G(s)}{P(s)}$$

where Q is a polynomial with coefficients determined by the initial conditions, G is the Laplace transform of g(t) and P is the **characteristic polynomial** of the original equation.

$$\mathscr{L}^{-1}\left\{\frac{Q(s)}{P(s)}\right\}$$

is called the zero input response,

April 8, 2019

15/33

and

$$\mathscr{L}^{-1}\left\{\frac{G(s)}{P(s)}\right\}$$
 is called the **zero state response**