Apr.i. 12 Math 2306 sec 58 Spring 2016

Section 13: The Laplace Transform

Definition: Let $f(t)$ be defined on $[0, \infty)$. The Laplace transform of f is denoted and defined by

$$
\mathscr{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t=F(s) .
$$

The domain of the transformation $F(s)$ is the set of all s such that the integral is convergent.

Note: The kernel for the Laplace transform is $K(s, t)=e^{-s t}$.

Find the Laplace transform of $f(t)=1$
By definition $\mathcal{L}\{1\}=\int_{0}^{\infty} e^{-s t} \cdot 1 d t$
Note if $s=0, e^{-s t}=e^{0}=1$. In this case we have

$$
\int_{0}^{\infty} 1 d t=\lim _{b \rightarrow \infty} \int_{0}^{b} d t=\left.\lim _{b \rightarrow \infty} t\right|_{0} ^{b}=\lim _{b \rightarrow \infty}(b-0)=\infty
$$

Divergent. So 0 is not in the domain of $\mathcal{Z}\{1\}$.
For $s \neq 0$, we hove

$$
\begin{aligned}
& \text { For } s \neq 0 \text {, we hove } \\
& y\{1\}=\int_{0}^{\infty} e^{-s t} d t=\left.\frac{1}{-s} e^{-s t}\right|_{0} ^{\infty} \begin{array}{l}
\text { This will } \\
\text { diverge if } \\
s<0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{-s}\left(0-e^{0}\right) \text { for } s>0 \\
& =\frac{-1}{s}(-1)=\frac{1}{s}
\end{aligned}
$$

So $y\{1\}=\frac{1}{s}$ with domain $s>0$

* Recall $\lim _{x \rightarrow \infty} e^{x}=\infty$ and $\lim _{x \rightarrow \infty} e^{-x}=0$

Find the Laplace transform of $f(t)=t$
By definition $\mathcal{L}\{t\}=\int_{0}^{\infty} e^{-s t} t d t$
If $s=0$, the integral is $\int_{0}^{\infty} t d t$ which diverges.
So O is not in the domain of $\mathcal{L}\{t\}$.
For $s \neq 0$
Int by parts

$$
\begin{aligned}
& s \neq 0 \\
& \mathscr{L}\{t\}=\int_{0}^{\infty} e^{-s t} t d t \\
& =\left.\frac{-1}{s} e^{-s t} t\right|_{0} ^{\infty}-\int_{0}^{\infty} \frac{-1}{s} e^{-s t} d t \\
& \text { diverse if } \\
& s<0
\end{aligned}
$$

$$
u=t \quad d u=d t
$$

$$
v=\frac{-1}{6} e^{-s t} d v=e^{-5 t} d t
$$

$$
\begin{aligned}
& =\frac{-1}{s}(0-0)+\frac{1}{s} \int_{0}^{\infty} e^{-s t} d t \quad \text { for } s>0 \\
& =\frac{1}{s} \mathscr{L}\{1\} \\
& =\frac{1}{s} \cdot \frac{1}{s}=\frac{1}{s^{2}}
\end{aligned}
$$

So $\mathscr{L}\{t\}=\frac{1}{s^{2}} \quad \omega$ domain $s>0$

* For $s>0 \quad \lim _{t \rightarrow \infty} e^{-s t} t=\lim _{t \rightarrow \infty} \frac{t}{e^{s t}}=" \frac{\infty}{\infty}$ " Use l Huspitel'r rule

$$
=\lim _{t \rightarrow \infty} \frac{1}{s e^{s t}}=\frac{1}{\infty}=0
$$

A piecewise defined function

$$
\begin{aligned}
& \text { Find the Laplace transform of } f \text { defined by } \\
& f(t)=\left\{\begin{array}{ll}
2 t, & 0 \leq t<10 \\
0, & t \geq 10
\end{array} \quad \text { By definition } \quad \mathcal{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t\right. \\
& y\{f(t)\}=\int_{0}^{10} e^{-s t} f(t) d t+\int_{10}^{\infty} e^{-s t} f(t) d t \\
& =\int_{0}^{10} e^{-s t}(2 t) d t+\int_{10}^{\infty} e^{-s t} \cdot 0 d t \\
& =2\left[\left.\frac{-1}{s} e^{-s t} \cdot t\right|_{0} ^{10}-\int_{0}^{10} \frac{-1}{6} e^{-s t} d t\right]
\end{aligned}
$$

$$
\begin{aligned}
& =2\left[\frac{-1}{s}\left(e^{-10 s} \cdot 10-e^{0} \cdot 0\right)+\frac{1}{s}\left(\left.\frac{-1}{s} e^{-s t}\right|_{0} ^{10}\right]\right. \\
& =2\left(\frac{-10}{s} e^{-10 s}+\frac{1}{s}\left(\frac{-1}{s} e^{-10 s}-\frac{-1}{s} e^{0}\right)\right] \\
& =2\left(\frac{-10}{s} e^{-10 s}-\frac{1}{s^{2}} e^{-10 s}+\frac{1}{s^{2}}\right) \\
& =\frac{-20}{s} e^{-10 s}-\frac{2}{s^{2}} e^{-10 s}+\frac{2}{s^{2}} \text { for } s \neq 0
\end{aligned}
$$

$$
\mathcal{L}\{f(t)\}=\frac{2}{s^{2}}-\frac{2}{s^{2}} e^{-10 s}-\frac{20}{s} e^{-10 s} \text { for } s \neq 0 \text {. }
$$

The Laplace Transform is a Linear Transformation

Some basic results include:

- $\mathscr{L}\{\alpha f(t)+\beta \boldsymbol{g}(t)\}=\alpha F(s)+\beta G(s)$
- $\mathscr{L}\{1\}=\frac{1}{s}, \quad s>0$
- $\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}, \quad s>0$ for $n=1,2, \ldots$
- $\mathscr{L}\left\{e^{a t}\right\}=\frac{1}{s-a}, \quad s>a$
- $\mathscr{L}\{\cos k t\}=\frac{s}{s^{2}+k^{2}}, \quad s>0$
- $\mathscr{L}\{\sin k t\}=\frac{k}{s^{2}+k^{2}}, \quad s>0$

Examples: Evaluate the Laplace transform of
(a) $f(t)=\cos (\pi t)$

$$
\mathcal{L}\{\cos (k t)\}=\frac{s}{s^{2}+k^{2}}, \quad s>0
$$

Were $k=\pi$ so

$$
\mathcal{L}\{\cos (\pi t)\}=\frac{s}{s^{2}+\pi^{2}}, \quad s>0
$$

Examples: Evaluate
$\mathcal{L}\left\{t^{n}\right\}=\frac{n^{!}}{s^{n+1}} \quad$ for $s>0$
(b) $f(t)=2 t^{4}-e^{-5 t}+3$ $\mathcal{L}\left\{e^{a t}\right\}=\frac{1}{s-a}$ for $s>a$
$\mathscr{L}\{\mid\}=\frac{1}{s}$ for $s>0$

$$
\begin{aligned}
\mathcal{L}\left\{2 t^{4}-e^{-5 t}+3\right\} & =2 \mathscr{L}\left\{t^{4}\right\}-\mathcal{L}\left\{e^{-5 t}\right\}+3 \mathscr{L}\{1\} \\
& =2 \frac{4!}{s^{5}}-\frac{1}{s-(-5)}+3 \frac{1}{s} \\
& =\frac{48}{s^{5}}-\frac{1}{s+5}+\frac{3}{5} \quad \text { for } s>0
\end{aligned}
$$

Examples: Evaluate
(c) $f(t)=(2-t)^{2}=4-4 t+t^{2}$

Expand the Square first

$$
\begin{aligned}
\mathscr{L}\left\{(2-t)^{2}\right\} & =\mathscr{L}\left\{4-4 t+t^{2}\right\} \\
& =4 \mathcal{L}\{1\}-4 \mathcal{L}\{t\}+\mathcal{L}\left\{t^{2}\right\} \\
& =4 \frac{1}{s}-4 \frac{1}{s^{2}}+\frac{2!}{s^{3}} \quad \text { for } s>0 \\
& =\frac{4}{s}-\frac{4}{s^{2}}+\frac{2}{s^{3}} \quad, s>0
\end{aligned}
$$

Examples: Evaluate
(d)

$$
\begin{aligned}
f(t) & =\sin ^{2} 5 t r \\
& =\frac{1}{2}-\frac{1}{2} \cos (10 t)=\frac{1}{2}-\frac{1}{2} \cos (2 \theta) \\
& \quad(\text { hen } \theta=5 t) \\
\mathcal{L}\left\{\sin ^{2} 5 t\right\} & =\mathcal{L}\left\{\frac{1}{2}-\frac{1}{2} \cos (10 t)\right\} \\
& =\frac{1}{2} \mathcal{L}\{1\}-\frac{1}{2} \mathcal{L}\{\cos (10 t)\} \\
& =\frac{1}{2} \frac{1}{S}-\frac{1}{2} \frac{s}{s^{2}+10^{2}} \quad \text { for } \quad s>0 \\
& =\frac{1}{2 s}-\frac{1}{2} \frac{s}{s^{2}+100}, \quad s>0
\end{aligned}
$$

Sufficient Conditions for Existence of $\mathscr{L}\{f(t)\}$

Definition: Let $c>0$. A function f defined on $[0, \infty)$ is said to be of exponential order c provided there exists positive constants M and T such that $|f(t)|<M e^{c t}$ for all $t>T$.

Definition: A function f is said to be piecewise continuous on an interval $[a, b]$ if f has at most finitely many jump discontinuities on $[a, b]$ and is continuous between each such jump.
(No verticed asymptotes)

Sufficient Conditions for Existence of $\mathscr{L}\{f(t)\}$

Theorem: If f is piecewise continuous on $[0, \infty)$ and of exponential order c for some $c>0$, then f has a Laplace transform for $s>c$.

$$
\begin{aligned}
& f(t)=e^{t^{2}} \text { doesnt have a Lopleen transform } \\
& \text { because it grows fester than } e^{c t} \text { for } \\
& \text { every rede number } c \text {. }
\end{aligned}
$$

Section 14: Inverse Laplace Transforms

Now we wish to go backwards: Given $F(s)$ can we find a function $f(t)$ such that $\mathscr{L}\{f(t)\}=F(s)$?

If so, we'll use the following notation

$$
\mathscr{L}^{-1}\{F(s)\}=f(t) \quad \text { provided } \quad \mathscr{L}\{f(t)\}=F(s)
$$

We'll call $f(t)$ an inverse Laplace transform of $F(s)$.

A Table of Inverse Laplace Transforms

- $\mathscr{L}^{-1}\left\{\frac{1}{s}\right\}=1$
- $\mathscr{L}^{-1}\left\{\frac{n!}{s^{n+1}}\right\}=t^{n}$, for $n=1,2, \ldots$
- $\mathscr{L}^{-1}\left\{\frac{1}{s-a}\right\}=e^{a t}$
- $\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+k^{2}}\right\}=\cos k t$
- $\mathscr{L}^{-1}\left\{\frac{k}{s^{2}+k^{2}}\right\}=\sin k t$

The inverse Laplace transform is also linear so that

$$
\mathscr{L}^{-1}\{\alpha F(s)+\beta G(s)\}=\alpha f(t)+\beta g(t)
$$

Find the Inverse Laplace Transform
When using the table, we have to match the expression inside the brackets $\}$ EXACTLY! Algebra, including partial fraction decomposition, is often needed.

$$
\begin{array}{ll}
\text { (a) } \begin{array}{l}
\mathscr{L}^{-1}\left\{\frac{1}{s^{7}}\right\} \quad \\
\qquad \begin{array}{l}
\text { Note that } \\
s^{7}
\end{array}=\frac{6!}{s^{7}} \cdot \frac{1}{6!}=\frac{1}{720} \frac{6!}{s^{7}} \\
= \\
\mathcal{L}^{-1}\left\{\frac{1}{720} \frac{6!}{s^{7}}\right\} \\
=
\end{array} \\
& \frac{1}{720} \mathscr{L}^{-1}\left\{\frac{6!}{s^{7}}\right\}=\frac{1}{720} t^{6}
\end{array}
$$

Example: Evaluate

$$
\text { (b) } \begin{aligned}
\mathscr{L}^{-1}\left\{\frac{s+1}{s^{2}+9}\right\} & =\mathcal{L}^{-1}\left\{\frac{s}{s^{2}+3^{2}}+\frac{1}{s^{2}+3^{2}}\right\} \\
& =\mathcal{L}^{-1}\left\{\frac{s}{s^{2}+3^{2}}\right\}+\mathcal{L}^{-1}\left\{\frac{1}{s^{2}+3^{2}}\right\} \\
& =\mathcal{L}^{-1}\left\{\frac{s}{s^{2}+3^{2}}\right\}+\mathcal{L}^{-1}\left\{\frac{1}{3} \frac{3}{s^{2}+3^{2}}\right\} \\
& =\mathcal{L}^{-1}\left\{\frac{s}{s^{2}+3^{2}}\right\}+\frac{1}{3} \mathcal{L}^{-1}\left\{\frac{3}{s^{2}+3^{2}}\right\} \\
& =\cos (3 t)+\frac{1}{3} \sin (3 t)
\end{aligned}
$$

Example: Evaluate
We require a partial fraction
(c) $\mathscr{L}^{-1}\left\{\frac{s-8}{s^{2}-2 s}\right\} \quad$ de comp on $\frac{s-8}{s(s-2)}$

$$
\frac{s-8}{s(s-2)}=\frac{A}{s}+\frac{B}{s-2}
$$

Clear fractions molt, by $s(s-2)$

$$
S-8=A(s-2)+B S
$$

Let $s=2 \quad 2-8=A(0)+B(2)$

$$
-6=2 B \Rightarrow B=-3
$$

Let $s=0$

$$
\begin{aligned}
0-8 & =A(-2)+B(0) \\
-8 & =-2 A \Rightarrow A=4
\end{aligned}
$$

So

$$
\frac{s-8}{s(s-2)}=\frac{4}{s}-\frac{3}{s-2}
$$

$$
\begin{aligned}
\mathcal{L}^{-1}\left\{\frac{s-8}{s(s-2)}\right\} & =\mathcal{L}^{-1}\left\{\frac{4}{s}-\frac{3}{s-2}\right\} \\
& =4 \mathcal{L}^{-1}\left\{\frac{1}{s}\right\}-3 \mathcal{L}\left\{\frac{1}{s-2}\right\} \\
& =4(1)-3 \cdot e^{2 t}=4-3 e^{2 t}
\end{aligned}
$$

