Here is what review we did in class on Tuesday April 12.

The cubic spline problem was not completed, but the set up is here and the final solution is available

```
HERE <--this is a link
```

(4) Consider using a $3^{r d}$ order interpolating polynomial $P_{3}(t)$ to approximate the function $f(t)=\tan ^{-1} t$ on the interval $-1 \leq t \leq 1$. Find the $x$-values $x_{0}, x_{1}, x_{2}, x_{3}$ that will minimize the error.
(5) Use the fact that $\left|f^{(4)}(t)\right| \leq 24$ for $-1 \leq t \leq 1$ to bound the error $\left|f(t)-P_{3}(t)\right|$ from problem (4).
4) The opting nodes are the Chebyshev nodes; for $P_{3}$, the roots of $T_{4}$.

$$
x_{j}=\operatorname{Cos}\left(\frac{(2 j+1) \pi}{2 \cdot 4}\right) \quad j=0,1,2,3
$$

$$
\begin{aligned}
& x_{0}=\cos \left(\frac{\pi}{8}\right)=0.9239 \\
& x_{1}=\cos \left(\frac{3 \pi}{8}\right) \doteq 0.3827 \\
& x_{2}=\cos \left(\frac{5 \pi}{8}\right)=-0.3827 \\
& x_{3}=\cos \left(\frac{7 \pi}{8}\right)=-0.9239
\end{aligned}
$$

5) Error $\left|f(t)-P_{3}(t)\right| \leqslant \frac{L}{2^{3}}$ where

$$
\begin{aligned}
& \text { here }=\left|\frac{f^{(4)}(t)}{4!}\right|
\end{aligned}
$$

were given $\left|f^{(4)}(t)\right| \leqslant 24$ on $[-1,1]$

So

$$
\begin{aligned}
\left|f(t)-P_{2}(t)\right| \leqslant \frac{\frac{24}{4!}}{2^{3}} & =\frac{1}{2^{3}}=\frac{1}{8} \\
& =0.125
\end{aligned}
$$

(6) Find the piece-wise linear interpolating function for the data set $\{(1,3),(1.5,2),(2,3.5)\}$.
(7) Find the natural cubic spline that interpolates the data in problem (6).
(6) Line through $(1,3)$ and $(1.5,2)$

$$
\begin{aligned}
\text { Slope } \quad m & =\frac{2-3}{1.5-1}=\frac{-1}{0.5}=-2 \\
y-3 & =-2(x-1)=-2 x+2 \Rightarrow y=-2 x+5
\end{aligned}
$$

Line through $(1.5,2)$ and $(2,3.5)$

$$
\text { slope } m=\frac{3.5-2}{2-1.5}=\frac{1.5}{0.5}=3
$$

April 12, $2016 \quad 20 / 47$

$$
\begin{gathered}
y-2=3(x-1.5)=3 x-4.5 \\
y=3 x-2.5
\end{gathered}
$$

so $\quad l(x)= \begin{cases}-2 x+5, & 1 \leq x \leq 1.5 \\ 3 x-2.5,1.5 \leq x \leq 2\end{cases}$
7) $(1,3),(1.5,2)(2,3.5)$
we need $M_{1}, M_{2}, M_{3}$ but $M_{1}=M_{3}=0$

$$
M_{1}+4 m_{2}+M_{3}=\frac{6}{h^{2}}\left(y_{3}-2 y_{2}+y_{1}\right)
$$

April 12, $2016 \quad 21 / 47$
here $h=\frac{1}{2}$

$$
\begin{aligned}
4 M_{2} & =\frac{6}{\left(\frac{1}{2}\right)^{2}}(3.5-2(2)+3) \\
& =\frac{6}{1 / 4}(6.5-4)=24(2.5) \\
M_{2} & =\frac{24}{4}(2.5)=6 \cdot\left(\frac{5}{2}\right)=15
\end{aligned}
$$

$$
\begin{array}{lll}
M_{1}=0 & M_{2}=15 & M_{3}=0 \\
x_{1}=1 & x_{2}=1.5 & x_{3}=2
\end{array} \quad h=\frac{1}{2}
$$

for $j=1$

$$
\begin{aligned}
& 0+\frac{15}{3}(x-1)^{3}+3 / 1 / 2(1.5-x)+\frac{2}{1 / 2}(x-1)-\frac{1 / 2}{6}[0+15(x-1)] \\
& 5\left(x^{3}-3 x^{2}+3 x-1\right)+6(1.5-x)+4(x-1)-\frac{1}{12}[15(x-1)]
\end{aligned}
$$

$$
j=2
$$

$$
\begin{gathered}
\frac{15}{3}(2-x)^{3}+\frac{2}{1 / 2}(2-x)+\frac{3.5}{1 / 2}(x-1.5) \\
-\frac{1 / 2}{6}[15(2-x)+0]
\end{gathered}
$$

Expond ony
sinplify completely
(11) Use Gaussian numerical integration $I_{2}(f)$ to approximate

$$
\int_{-1}^{1} \sqrt[3]{x} e^{-x} d x
$$

$$
\begin{aligned}
& I_{2}(f)=w_{1} f\left(x_{1}\right)+w_{2} f\left(x_{2}\right) \\
& f(x)=\sqrt[3]{x} e^{-x} \\
& \quad f\left(x_{1}\right)=\sqrt[3]{\frac{-1}{\sqrt{3}}} e^{-\left(\frac{-1}{\sqrt{3}}\right)}=\frac{-1}{\sqrt[6]{3}} e^{\frac{1}{\sqrt{3}}}
\end{aligned}
$$

$$
\begin{aligned}
f\left(x_{2}\right) & =\sqrt[3]{\frac{1}{\sqrt{3}}} e^{-\left(\frac{1}{\sqrt{3}}\right)}=\frac{1}{\sqrt[6]{3}} e^{-\frac{1}{\sqrt{3}}} \\
I_{2}(f) & =\frac{-1}{6 \sqrt[6]{3}} e^{\frac{1}{\sqrt{3}}}+\frac{1}{\sqrt[6]{3}} e^{-\frac{1}{\sqrt{3}}} \\
& =-1.0158
\end{aligned}
$$

