April 14 Math 2306 sec 59 Spring 2016

Section 14: Inverse Laplace Transforms
Now we wish to go backwards: Given $F(s)$ can we find a function $f(t)$ such that $\mathscr{L}\{f(t)\}=F(s)$?

If so, we'll use the following notation

$$
\mathscr{L}^{-1}\{F(s)\}=f(t) \quad \text { provided } \quad \mathscr{L}\{f(t)\}=F(s)
$$

We'll call $f(t)$ an inverse Laplace transform of $F(s)$.

A Table of Inverse Laplace Transforms

- $\mathscr{L}^{-1}\left\{\frac{1}{s}\right\}=1$
- $\mathscr{L}^{-1}\left\{\frac{n!}{s^{n+1}}\right\}=t^{n}$, for $n=1,2, \ldots$
- $\mathscr{L}^{-1}\left\{\frac{1}{s-a}\right\}=e^{a t}$
- $\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+k^{2}}\right\}=\cos k t$
- $\mathscr{L}^{-1}\left\{\frac{k}{s^{2}+k^{2}}\right\}=\sin k t$

The inverse Laplace transform is also linear so that

$$
\mathscr{L}^{-1}\{\alpha F(s)+\beta G(s)\}=\alpha f(t)+\beta g(t)
$$

Find the Inverse Laplace Transform
When using the table, we have to match the expression inside the brackets $\}$ EXACTLY! Algebra, including partial fraction decomposition, is often needed.

$$
\text { (a) } \begin{aligned}
& \mathscr{L}^{-1}\left\{\frac{1}{s^{7}}\right\} \quad \frac{\text { Note }}{s^{7}}=\frac{1}{6!} \frac{6!}{s^{7}}=\frac{1}{720} \frac{6!}{s^{7}} \\
& =\mathscr{L}^{-1}\left\{\frac{1}{720} \frac{6!}{s^{7}}\right\} \\
& = \\
& =\frac{1}{720} \mathscr{L}^{-1}\left\{\frac{6!}{s^{7}}\right\}=\frac{1}{720} t^{6}
\end{aligned}
$$

Example: Evaluate
Note

$$
\begin{aligned}
& \text { (b) } \mathscr{L}^{-1}\left\{\frac{s+1}{s^{2}+9}\right\} \\
& =\mathcal{L}^{-1}\left\{\frac{s}{s^{2}+3^{2}}+\frac{1}{3} \frac{3}{s^{2}+3^{2}}\right\} \\
& \mathcal{L}^{-1}\left\{\frac{s}{s^{2}+3^{2}}\right\}+\frac{1}{3} \mathcal{L}^{-1}\left\{\frac{3}{s^{2}+3^{2}}\right\} \\
& =\cos (3 t)+\frac{1}{3} \sin (3 t)
\end{aligned}
$$

$$
\begin{aligned}
\frac{s+1}{s^{2}+9}= & \frac{s}{s^{2}+3^{2}}+\frac{1}{s^{2}+3^{2}} \\
= & \frac{s}{s^{2}+3^{2}}+\frac{1}{3} \frac{3}{s^{2}+3^{2}} \\
& \mathscr{L}^{-1}\left\{\frac{s}{s^{2}+k^{2}}\right\}=\cos (k t) \\
& \mathscr{L}^{-1}\left\{\frac{k}{s^{2}+k^{2}}\right\}=\sin (k t)
\end{aligned}
$$

Example: Evaluate
We'll do partial fraction decomp
(c) $\mathscr{L}^{-1}\left\{\frac{s-8}{s^{2}-2 s}\right\}$ on $\frac{s-8}{s(s-2)}$

$$
\begin{aligned}
\frac{s-8}{s(s-2)} & =\frac{A}{s}+\frac{B}{s-2} \\
s-8 & =A(s-2)+B s
\end{aligned}
$$

$$
\begin{aligned}
& s-8=A(s-2)+B s \\
& \text { LeA } s=0 \quad 0-8=A(0-2) \\
&-8=-2 A \Rightarrow A=4 \\
& s=2 \quad 2-8=A(2-2)+B \cdot 2 \\
&-6=2 B \Rightarrow B=-3
\end{aligned}
$$

Clecr fractions
mult.ply both sido by $s(s-2)$

$$
\begin{aligned}
\mathcal{L}^{-1}\left\{\frac{s-8}{s^{2}-2 s}\right\} & =\mathcal{L}^{-1}\left\{\frac{4}{s}-\frac{3}{s-2}\right\} \\
& =4 \mathcal{L}^{-1}\left\{\frac{1}{s}\right\}-3 \mathcal{L}^{-1}\left\{\frac{1}{s-2}\right\} \\
& =4 \cdot 1-3 \cdot e^{2 t} \quad \mathcal{L}^{-1}\left\{\frac{1}{s}\right\}=1 \\
& =4-3 e^{2 t} \quad \mathcal{L}^{-1}\left\{\frac{1}{s-a}\right\}=e^{a t}
\end{aligned}
$$

Section 15: Shift Theorems
Suppose we wish to evaluate $\mathscr{L}^{-1}\left\{\frac{2}{(s-1)^{3}}\right\}$. Does it help to know that $\mathscr{L}\left\{t^{2}\right\}=\frac{2}{s^{3}}$?

$$
\begin{aligned}
\begin{array}{c}
\text { Consider } \\
y\left\{e^{t} t^{2}\right\}
\end{array} & =\int_{0}^{\infty} e^{-s t} e^{t} t^{2} d t \\
& =\int_{0}^{\infty} e^{-(s-1) t} t^{2} d t
\end{aligned}
$$

Propantier of Exponeticls

$$
\begin{aligned}
e^{-s t} \cdot e^{t} & =e^{-s t+t} \\
& =e^{(-s+1) t} \\
& =e^{-(s-1) t}
\end{aligned}
$$

This looks like $y\left\{t^{2}\right\}$ except s is replaced owl $s-1$. If $F(s)=y\left\{t^{2}\right\}$, this is $F(s-1)$.

$$
\mathcal{L}\left\{t^{2}\right\}=\frac{2!}{s^{2+1}}=\frac{2}{s^{3}}=F(s)
$$

so $F(s-1)=\frac{2}{(s-1)^{3}}$
That is, $\mathscr{L}^{-1}\left\{\frac{2}{(s-1)^{3}}\right\}=e^{t} t^{2}$

Theorem (translation in s)

Suppose $\mathscr{L}\{f(t)\}=F(s)$. Then for any real number a

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}=F(s-a) .
$$

For example,

$$
\begin{gathered}
\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}} \Longrightarrow \mathscr{L}\left\{e^{a t t^{n}}\right\}=\frac{n!}{(s-a)^{n+1}} . \\
\mathscr{L}\{\cos (k t)\}=\frac{s}{s^{2}+k^{2}} \Longrightarrow \mathscr{L}\left\{e^{a t} \cos (k t)\right\}=\frac{s-a}{(s-a)^{2}+k^{2}} . \\
\text { Every where } s \text { is replaced bs } s-a
\end{gathered}
$$

Inverse Laplace Transforms (completing the square)
(a) $\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+2 s+2}\right\} \quad s^{2}+2 s+2$ is irreducible

$$
b^{2}-4 a c=2^{2}-4 \cdot 1 \cdot 2=4-8<0
$$

well complete the square

$$
\begin{aligned}
& s^{2}+2 s+2=s^{2}+2 s+1-1+2 \\
&=\left(s^{2}+2 s+1\right)+1=(s+1)^{2}+1 \\
& \frac{s}{s^{2}+2 s+2}=\frac{s}{(s+1)^{2}+1}=\frac{s+1-1}{(s+1)^{2}+1}=\frac{s+1}{(s+1)^{2}+1}-\frac{1}{(s+1)^{2}+1}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{L}^{-1}\left\{\frac{s}{s^{2}+2 s+2}\right\}=\mathcal{Y}^{-1}\left\{\frac{s+1}{(s+1)^{2}+1}-\frac{1}{(s+1)^{2}+1}\right\} \\
& =\mathscr{L}^{-1}\left\{\frac{s+1}{(s+1)^{2}+1}\right\}-\mathcal{L}^{-1}\left\{\frac{1}{(s+1)^{2}+1}\right\} \\
& =e^{-t} \cos t-e^{-t} \sin t \\
& * \mathcal{L}^{-1}\left\{\frac{s}{s^{2}+h^{2}}\right\}=\cos k t \text { and } \mathcal{L}^{-1}\left\{\frac{k}{s^{2}+k^{2}}\right\}=\sin k t \\
& s+1=s-(-1)
\end{aligned}
$$

