April 15 MATH 1112 sec. 54 Spring 2019

Section 7.5: Trigonometric Equations

A General Observation: When solving more complicated trigonometric equations, we will try to rewrite the problem in the form of one or more equations that look like

$$
\text { One Trig Function }=\text { One Number }
$$

We typically determine solution(s) in one period, and then extend those solutions if required.

Example
Find all possible solutions of the equation $1+\cos \theta=2 \sin ^{2} \theta$.
we can try to rewrite the equation to have only sine or only cosine. Note $\sin ^{2} \theta+\cos ^{2} \theta=1$

The equation is

$$
\begin{aligned}
& 1+\cos \theta=2\left(1-\cos ^{2} \theta\right) \\
&=2-2 \cos ^{2} \theta \\
& 2 \cos ^{2} \theta-2+1+\cos \theta=0 \\
& 2 \cos ^{2} \theta+\cos \theta-1=0
\end{aligned}
$$

Looks like

$$
\begin{gathered}
2 u^{2}+u-1=0 \\
(2 u-1)(u+1)=0
\end{gathered}
$$

The trig equation is

$$
(2 \cos \theta-1)(\cos \theta+1)=0
$$

By the zero product property

$$
\begin{aligned}
2 \cos \theta-1 & =0 & \text { or } & \cos \theta+1=0 \\
\cos \theta & =\frac{1}{2} & \text { or } & \cos \theta=-1
\end{aligned}
$$

we solved the first equation on 4/10/19 and found

$$
\begin{aligned}
& \theta=\frac{\pi}{3}+2 \pi k \text { or } \\
& \theta=\frac{5 \pi}{3}+2 \pi k \quad \text { for } k=0, \pm 1, \pm 2, \ldots
\end{aligned}
$$

In one revolution $(\theta$ in $[0,2 \pi))$, thane is one solution to $\cos \theta=-1$

$$
\theta=\pi
$$

All solutions are $\theta=\pi+2 \pi k$ for k anintegen.
All solutions to $1+\cos \theta=2 \sin ^{2} \theta$ are

$$
\theta=\frac{\pi}{3}+2 \pi k, \text { or } \theta=\frac{5 \pi}{3}+2 \pi k, \text { or } \theta=\pi+2 \pi k
$$

for $h=0, \pm 1, \pm 2, \ldots$

Consider $y=\cos x$ on $[0,2 \pi)$

Solutions on an Indicated Interval
Find all solutions of the equation $\cos ^{2}(2 x)=\frac{1}{4}$ on the interval $0 \leq x<2 \pi$.

One solution process is to consida $\cos ^{2} \theta=\frac{1}{4}$, Solve this, then let $\theta=2 x$. If $0 \leq x<2 \pi$ and $\theta=2 x$, then $0 \cdot 2 \leqslant 2 \cdot x<2 \cdot(2 \pi)$

$$
0 \leqslant 2 x<4 \pi
$$

So $\quad 0 \leqslant \theta<4 \pi \quad$ (2 full rotations)

$$
\cos ^{2} \theta=\frac{1}{4} \Rightarrow \cos \theta= \pm \sqrt{\frac{1}{4}}= \pm \frac{1}{2}
$$

$$
\cos \theta=\frac{1}{2} \quad \text { or } \quad \cos \theta=\frac{-1}{2}
$$

Recall that if the reference angle is $\frac{\pi}{3}$ then the cosine is $\frac{1}{2}$ or $\frac{-1}{2}$.

In 2 fall rotations

$$
\begin{aligned}
\cos \theta=\frac{1}{2} \text { if } \theta & =\frac{\pi}{3}, \theta=\frac{5 \pi}{3}, \theta=\frac{7 \pi}{3} \text { or } \\
\theta & =\frac{11 \pi}{3}
\end{aligned}
$$

In 2 full rotations

$$
2 \text { full rotations }
$$

April 15, $2019 \quad 7 / 48$

Now, $\theta=2 x$ so $x=\frac{\theta}{2}$

$$
x=\frac{\pi / 3}{2}, \frac{5 \pi / 3}{2}, \frac{\frac{7 \pi}{3}}{2}, \frac{11 \pi / 3}{2}=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}
$$

$$
x=\frac{2 \pi / 3}{2}, \frac{4 \pi / 3}{2}, \frac{8 \pi / 3}{2}, \frac{10 \pi / 3}{2}=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}
$$

Squaring \& Superfluous Solutions
If both sides of an equation are squared, this may introduce extraneous solutions. To weed out such apparent (but false) solutions, check all answers.

Example: Find all solutions of $\tan (x)-1=\sec (x)$ on the interval $0 \leq x<2 \pi$.

One ID is $\tan ^{2} x+1=\sec ^{2} x$. Let's square both sides of the equation.

$$
\begin{gathered}
(\tan x-1)^{2}=(\sec x)^{2} \\
\tan ^{2} x-2 \tan x+1=\sec ^{2} x
\end{gathered}
$$

Now use the Pythagorean ID

$$
\tan ^{2} x-2 \tan x+1=\tan ^{2} x+1
$$

Subtract $\tan ^{2} x+1$

$$
\begin{aligned}
-2 \tan x & =0 \\
\tan x & =0
\end{aligned}
$$

In $[0,2 \pi)$, this is true when $x=0$ of when $x=\pi$.
we need to check if these solve the original equation.

$$
\tan x-1=\sec x
$$

Check $x=0$

$$
\begin{aligned}
& \tan 0-1 \stackrel{?}{=} \sec 0 \\
& 0-1=1 \quad ? \quad x_{00}^{\prime=0} \\
& -1=1 \text { false: is or } \\
& 0_{50} \operatorname{lut}^{2}
\end{aligned}
$$

Check $x=\pi$

$$
\begin{aligned}
\tan \pi-1 & \stackrel{?}{=} \sec \pi \\
0-1 & \stackrel{?}{=}-1 \\
-1 & =-1 \quad \text { tee }
\end{aligned}
$$

The only solution is $x=\pi$.

Using Inverse Trigonometric Functions
Find the solutions of the equation $4 \sin \theta=1$ on $[0,2 \pi)$. Express answers exactly in terms of the inverse sine.

Isolate $\sin \theta: \quad \sin \theta=\frac{1}{4}$
$\frac{1}{4}$ is not ce "nice" sine value.
$\sin \theta=\frac{1}{4}$ should have one quodsent I answer and on quadrant II answer (since $\frac{1}{4}$ is positive)

Recall: the range of $\sin ^{-1} x$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

One solution to $\sin \theta=\frac{1}{4}$ is

$$
\theta=\sin ^{-1}\left(\frac{1}{4}\right)
$$

That's a $1^{\text {st }}$ quadrant solution.

The $2^{n d}$ solution is $\theta=\pi-\sin ^{-1}\left(\frac{1}{4}\right)$

The solutions to $\sin \theta=\frac{1}{4}$ are

$$
\theta=\sin ^{-1}\left(\frac{1}{4}\right) \text { and } \theta=\pi-\sin ^{-1}\left(\frac{1}{4}\right)
$$

