April 15 Math 2306 sec. 54 Spring 2019

Section 16: Laplace Transforms of Derivatives and IVPs

For $y=y(t)$ defined on $[0, \infty)$ having derivatives $y^{\prime}, y^{\prime \prime}$ and so forth, if

$$
\mathscr{L}\{y(t)\}=Y(s)
$$

then

$$
\begin{gathered}
\mathscr{L}\left\{\frac{d y}{d t}\right\}=s Y(s)-y(0), \\
\mathscr{L}\left\{\frac{d^{2} y}{d t^{2}}\right\}=s^{2} Y(s)-s y(0)-y^{\prime}(0), \\
\vdots \\
\mathscr{L}\left\{\frac{d^{n} y}{d t^{n}}\right\}=s^{n} Y(s)-s^{n-1} y(0)-s^{n-2} y^{\prime}(0)-\cdots-y^{(n-1)}(0) .
\end{gathered}
$$

Solving IVPs

Figure: We use the Laplace transform to turn our DE into an algebraic equation. Solve this transformed equation, and then transform back.

General Form

We get

$$
Y(s)=\frac{Q(s)}{P(s)}+\frac{G(s)}{P(s)}
$$

where Q is a polynomial with coefficients determined by the initial conditions, G is the Laplace transform of $g(t)$ and P is the characteristic polynomial of the original equation.
$\mathscr{L}^{-1}\left\{\frac{Q(s)}{P(s)}\right\} \quad$ is called the zero input response,
and
$\mathscr{L}^{-1}\left\{\frac{G(s)}{P(s)}\right\} \quad$ is called the zero state response.

Solve the IVP using the Laplace Transform
(a)

$$
\begin{aligned}
& \frac{d y}{d t}+3 y=2 t \quad y(0)=2 \quad \text { Let } \mathcal{L}\{y \mid(t)\}=Y(s) \\
& \mathcal{L}\left\{y^{\prime}+3 y\right\}=\mathcal{L}\{2 t\} \\
& \mathcal{L}\left\{y^{\prime}\right\}+3 \mathcal{L}\{y\}=2 \mathcal{L}\{t\} \\
& s Y(s)-y(0)+3 Y(s)=2\left(\frac{1}{s^{2}}\right) \\
& (s+3) Y(s)-2=\frac{2}{s^{2}} \Rightarrow \quad(s+3) Y(s)=\frac{2}{s^{2}}+2 \\
&
\end{aligned}
$$

well decompose $\frac{2}{s^{2}(s+3)}$

$$
\begin{aligned}
\frac{2}{s^{2}(s+3)} & =\frac{A}{s}+\frac{B}{s^{2}}+\frac{C}{s+3} \quad \text { clear fractions } \\
2 & =A s(s+3)+B(s+3)+C s^{2} \\
2 & =A\left(s^{2}+3 s\right)+B(s+3)+C s^{2} \\
2 & =(A+C) s^{2}+(3 A+B) s+3 B
\end{aligned}
$$

Match coefficients

$$
\begin{array}{ll}
A+C=0 & 3 B=2 \\
3 A+B=0
\end{array}
$$

$$
B=\frac{2}{3}, \quad A=\frac{-B}{3}=\frac{-2}{9} \text { and } C=-A=\frac{2}{9}
$$

So

$$
\begin{aligned}
U_{(s)} & =\frac{-2 / q}{s}+\frac{2 / 3}{s^{2}}+\frac{2 / 9}{s+3}+\frac{2}{s+3} \\
& =\frac{-2 / 9}{s}+\frac{2 / 3}{s^{2}}+\frac{20 / 9}{s+3}
\end{aligned}
$$

The solution to the $V P$ is $y(t)=\mathcal{L}^{-1}\{Y(s)\}$

$$
y(t)=\frac{-2}{9} \mathscr{L}^{-1}\left\{\frac{1}{s}\right\}+\frac{2}{3} \mathscr{L}^{-1}\left\{\frac{1}{s^{2}}\right\}+\frac{20}{9} \mathscr{L}^{-1}\left\{\frac{1}{s+3}\right\}
$$

$$
y(t)=\frac{-2}{9}+\frac{2}{3} t+\frac{20}{9} e^{-3 t}
$$

Solve the IVP using the Laplace Transform

$$
\begin{aligned}
& \left.y^{\prime \prime}+4 y^{\prime}+4 y=t e^{-2 t} \quad y(0)=1, y^{\prime}(0)=0 \quad \text { Let } Y(s)=\mathcal{L}\{y \mid t\}\right\} \\
& \mathcal{L}\left\{y^{\prime \prime}\right\}+\mathcal{L}\left\{y^{\prime}\right\}+4 \mathcal{L}\{b\}=\mathcal{L}\left\{t e^{-2 t}\right\} \\
& \mathcal{L}\left\{e^{a t} f(t)\right\}=F(s-a) \text { ad } \mathcal{L}\{t\}=\frac{1}{s^{2}} \\
& s^{2} Y(s)-s y(0)-y^{\prime}(0)+4(s Y(s)-y(0))+4 Y(s)=\frac{1}{(s+2)^{2}} \\
& 1_{1}^{\prime \prime} \\
& s^{2} Y(s)-s+4 s Y(s)-4+4 Y(s)=\frac{1}{(s+2)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\left(s^{2}+4 s+4\right) Y(s)-s-4 & =\frac{1}{(s+2)^{2}} \\
\left(s^{2}+4 s+4\right) Y(s) & =\frac{1}{(s+2)^{2}}+s+4 \\
\left.Y_{(}\right) & =\frac{1}{(s+2)^{2}\left(s^{2}+4 s+4\right)}+\frac{s+4}{s^{2}+4 s+4}
\end{aligned}
$$

Note $s^{2}+4 s+4=(s+2)^{2}$ and $s+4=s+2+2$
So

$$
Y(s)=\frac{1}{(s+2)^{4}}+\frac{s+2}{(s+2)^{2}}+\frac{2}{(s+2)^{2}}
$$

$$
Y(s)=\frac{1}{(s+2)^{4}}+\frac{1}{s+2}+\frac{2}{(s+2)^{2}}
$$

Recall $\mathcal{L}\left\{t e^{-2 t}\right\}=\frac{1}{(s+2)^{2}}$
Also $\mathcal{L}^{-1}\left\{\frac{1}{s^{4}}\right\}=\mathcal{L}^{-1}\left\{\frac{1}{3!} \frac{3!}{s^{4}}\right\}=\frac{1}{3!} \mathscr{L}^{-1}\left\{\frac{3!}{s^{4}}\right\}=\frac{1}{3!} t^{3}$

$$
\begin{gathered}
\mathcal{L}^{-1}\left\{\frac{1}{(s+2)^{4}}\right\}=\frac{1}{3!} t^{3} e^{-2 t} \\
y(t)=\mathcal{L}^{-1}\{Y(s)\}=\mathcal{L}^{-1}\left\{\frac{1}{(s+2)^{4}}\right\}+\dot{L}^{-1}\left\{\frac{1}{s+2}\right\}+2 \mathcal{L}^{-1}\left\{\frac{1}{(s+2)^{2}}\right\}
\end{gathered}
$$

$$
y(t)=\frac{1}{3!} t^{3} e^{-2 t}+e^{-2 t}+2 t e^{-2 t}
$$

Solve the IVP

An LR-series circuit has inductance $L=1$ h, resistance $R=10 \Omega$, and applied force $E(t)$ whose graph is given below. If the initial current $i(0)=0$, find the current $i(t)$ in the circuit.

The ODE is $L \frac{d i}{d t}+R_{i}=E$

LR Circuit Example
writing E in temp of unit steps

$$
E(t)=0-0 u(t-1)+E_{0} u(t-1)-E_{0} u(t-3)+0 u(t-3)
$$

The IV P is

$$
\begin{aligned}
& \frac{d i}{d t}+10 i=E_{0} u(t-1)-E_{0} u(t-3), \quad i(0)=0 \\
& \text { Let } \mathcal{L}\{i(t)\}=I(s) \\
& \mathcal{L}\left\{\frac{d i}{d t}\right\}+10 \mathcal{L}\{i\}=E_{0} \mathcal{L}\{u(t-1)\}-E_{0} \mathcal{L}\{u(t-3)\}
\end{aligned}
$$

$$
\begin{gathered}
s I(s)-i(0)+10 I(s)=E_{0} \frac{e^{-s}}{s}-\frac{E_{0} e^{-3 s}}{s} \\
0^{\prime \prime} \\
(s+10) I(s)=\frac{E_{0}}{s} \frac{e^{-s}}{s}-E_{0} \frac{e^{-3 s}}{s} \\
I(s)=E_{0} \frac{e^{-s}}{s(s+10)}-E_{0} \frac{e^{-3 s}}{s(s+10)}
\end{gathered}
$$

wéll decompose $\frac{1}{s(s+10)}$

$$
\frac{1}{s(s+10)}=\frac{A}{s}+\frac{B}{s+10}
$$

$$
\begin{aligned}
& \Rightarrow \quad 1=A(s+10)+B s \\
& \text { Set } S=0 \quad 1=10 \mathrm{~A} \quad A=\frac{1}{10} \\
& S=-10 \quad I=-10 B \quad B=\frac{-1}{10}
\end{aligned}
$$

So

$$
\begin{aligned}
& I(s)=\frac{E_{0}}{10} e^{-s}\left(\frac{1}{s}-\frac{1}{s+10}\right)-\frac{E_{0}}{10} e^{-3 s}\left(\frac{1}{s}-\frac{1}{s+10}\right) \\
& \mathscr{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) u(t-a)
\end{aligned}
$$

where $f(t)=\mathcal{L}^{-1}\{F(s)\}$

$$
\begin{aligned}
\mathcal{L}^{-1}\left\{\frac{1}{s}-\frac{1}{s+10}\right\} & =\mathcal{L}^{-1}\left\{\frac{1}{s}\right\}-\mathcal{L}^{-1}\left\{\frac{1}{s+10}\right\} \\
& =1-e^{-10 t}
\end{aligned}
$$

The current $i(t)=\mathcal{L}^{-1}\{I(s)\}$

$$
\begin{aligned}
i(t) & =\mathcal{L}^{-1}\left\{\frac{E_{0}}{10} e^{-s}\left(\frac{1}{s}-\frac{1}{s+10}\right)\right\}-\mathcal{L}^{-1}\left\{\frac{E_{0}}{10} e^{-3 s}\left(\frac{1}{s}-\frac{1}{s+10}\right)\right\} \\
& =\frac{E_{0}}{10} \mathcal{L}^{-1}\left\{e^{-s}\left(\frac{1}{s}-\frac{1}{s+10}\right)\right\}-\frac{E_{0}}{10} \mathcal{L}^{-1}\left\{e^{-3 s}\left(\frac{1}{5}-\frac{1}{s+10}\right)\right\}
\end{aligned}
$$

$$
i(t)=\frac{E_{0}}{10}\left(1-e^{-10(t-1)}\right) u(t-1)-\frac{E_{0}}{10}\left(1-e^{-10(t-3)}\right) u(t-3)
$$

