April 19 Math 2306 sec 58 Spring 2016

Section 15: Shift Theorems

Theorem (translation in s)
Suppose $\mathscr{L}\{f(t)\}=F(s)$. Then for any real number a

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}=F(s-a) .
$$

For example,

$$
\begin{aligned}
\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}} & \Longrightarrow \mathscr{L}\left\{e^{a t} t^{n}\right\}=\frac{n!}{(s-a)^{n+1}} . \\
\mathscr{L}\{\cos (k t)\}=\frac{s}{s^{2}+k^{2}} & \Longrightarrow \mathscr{L}\left\{e^{a t} \cos (k t)\right\}=\frac{s-a}{(s-a)^{2}+k^{2}} .
\end{aligned}
$$

Inverse Laplace Transforms (repeat linear factors)

(b) $\mathscr{L}\left\{\frac{1+3 s-s^{2}}{s(s-1)^{2}}\right\}$

We were doing a partial fraction decomposition and wrote

$$
\begin{gathered}
\frac{-s^{2}+3 s+1}{s(s-1)^{2}}=\frac{A}{s}+\frac{B}{s-1}+\frac{C}{(s-1)^{2}} \Longrightarrow \\
-s^{2}+3 s+1=A(s-1)^{2}+B s(s-1)+C s=A\left(s^{2}-2 s+1\right)+B\left(s^{2}-s\right)+C s \\
-s^{2}+3 s+1=(A+B) s^{2}+(-2 A-B+C) s+\underset{=}{=}= \\
A+B=-1 \\
-2 A-B+C=3 \\
A=1
\end{gathered}
$$

$$
\begin{aligned}
B=-1-A & =-1-1=-2 \\
C=3+B+2 A & =3-2+2(1)=3 \\
\mathcal{L}^{-1}\left\{\frac{-s^{2}+3 s+1}{s(s-1)^{2}}\right\} & =\mathcal{L}^{-1}\left\{\frac{1}{s}-\frac{2}{s-1}+\frac{3}{(s-1)^{2}}\right\} \\
& =\mathcal{L}^{-1}\left\{\frac{1}{s}\right\}-2 \mathcal{L}^{-1}\left\{\frac{1}{s-1}\right\}+3 \mathcal{L}^{-1}\left\{\frac{1}{(s-1)^{2}}\right\} \\
& =1-2 e^{t}+3 t e^{t}
\end{aligned}
$$

* $\mathcal{L}\{t\}=\frac{1!}{s^{2}}=\frac{1}{s^{2}}$
and $\frac{1}{(s-1)^{2}}$ is $\frac{1}{s^{2}}$ w) s
replaced with $s-1$.
so $\mathcal{L}^{-1}\left\{\frac{1}{(s-1)^{2}}\right\}=t \cdot e^{1 t}$

The Unit Step Function

Let $a \geq 0$. The unit step function $\mathscr{U}(t-a)$ is defined by

$$
\mathscr{U}(t-a)= \begin{cases}0, & 0 \leq t<a \\ 1, & t \geq a\end{cases}
$$

Figure: We can use the unit step function to provide convenient expressions for piecewise defined functions.

Piecewise Defined Functions
Verify that

$$
f(t)=\left\{\begin{array}{l}
g(t), \quad 0 \leq t<a \\
h(t), \quad t \geq a
\end{array}=g(t)-g(t) \mathscr{U}(t-a)+h(t) \mathscr{U}(t-a)\right.
$$

We reed to consider the cases $0 \leq t<a$ and $t \geqslant a$. If $0 \leq t<a$ then $U(t-a)=0$. So for $0 \leq t<a$
$f(t)=g(t)-g(t) \cdot 0+h(t) \cdot 0=g(t)$ as is required

If $t \geqslant a$, then $u(t-a)=1$. So for $t \geqslant a$

$$
f(t)=g(t)-g(t) \cdot 1+h(t) \cdot 1=h(t)
$$

So

$$
\left\{\begin{array}{l}
g(t), 0 \leq t<a \\
h(t), t \geqslant a
\end{array}=g(t)-g(t) u(t-a)+h(t) u(t-a) .\right.
$$

Piecewise Defined Functions in Terms of \mathscr{U}
Write f on one line in terms of \mathscr{U} as needed

$$
\begin{gathered}
f(t)=\left\{\begin{array}{cc}
e^{t}, & 0 \leq t<2 \\
t^{2}, & 2 \leq t<5 \\
2 t & t \geq 5
\end{array}\right. \\
f(t)=e^{t}-e^{t} u(t-2)+t^{2} u(t-2)-t^{2} u(t-5)+2 t u(t-5) \\
\begin{array}{ccc}
\text { off } t & \text { two } & \text { off } \\
e^{2} & t^{2} & \text { on } 2 t
\end{array}
\end{gathered}
$$

Lets verify

If $0 \leq t<2$ then $t<s$ so $u(t-2)=0$ and $u(t-s)=0$

$$
f(t)=e^{t}-e^{t} \cdot 0+t^{2} \cdot 0-t^{2} \cdot 0+2 t \cdot 0=e^{t}
$$

If $2 \leq t<5$ then $u(t-2)=1$ and $u(t-5)=0$

$$
f(t)=e^{t}-e^{t} \cdot 1+t^{2} \cdot 1-t^{2} \cdot 0+2 t \cdot 0=t^{2}
$$

If $t \geq 5$ then $t>2$ so $u(t-2)=1$ and $u(t-5)=1$

$$
f(t)=e^{t}-e^{t} \cdot 1+t^{2} \cdot 1-t^{2} \cdot 1+2 t \cdot 1=2 t
$$

Translation in t

Given a function $f(t)$ for $t \geq 0$, and a number $a>0$

$$
f(t-a) \mathscr{U}(t-a)= \begin{cases}0, & 0 \leq t<a \\ f(t-a), & t \geq a\end{cases}
$$

Figure: The function $f(t-a) \mathscr{U}(t-a)$ has the graph of f shifted a units to the right with value of zero for t to the left of a.

Theorem (translation in t)

If $F(s)=\mathscr{L}\{f(t)\}$ and $a>0$, then

$$
\mathscr{L}\{f(t-a) \mathscr{U}(t-a)\}=e^{-a s} F(s) .
$$

In particular,

$$
\mathscr{L}\{\mathscr{U}(t-a)\}=\frac{e^{-a s}}{s} .
$$

As another example,

$$
\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}} \quad \Longrightarrow \quad \mathscr{L}\left\{(t-a)^{n} \mathscr{U}(t-a)\right\}=\frac{n!e^{-a s}}{s^{n+1}} .
$$

Example
Find the Laplace transform $\mathscr{L}\{f(t)\}$ where

$$
f(t)= \begin{cases}1, & 0 \leq t<1 \\ t, & t \geq 1\end{cases}
$$

(a) First write f in terms of unit step functions.

$$
\begin{aligned}
f(t) & =1-1 u(t-1)+t u(t-1) \\
& =1+(-1+t) u(t-1) \\
& =1+(t-1) u(t-1)
\end{aligned}
$$

Example Continued...
(b) Now use the fact that $f(t)=1+(t-1) \mathscr{U}(t-1)$ to find $\mathscr{L}\{f\}$.

$$
\begin{aligned}
\mathscr{L}\{f(t)\} & =\mathscr{L}\{1+(t-1) u(t-1)\} \\
& =\mathcal{L}\{1\}+\mathcal{L}\{(t-1) u(t-1)\} \\
& =\frac{1}{S}+\frac{1}{S^{2}} \cdot e^{-1 s}=\frac{1}{S}+\frac{e^{-s}}{\delta^{2}}
\end{aligned}
$$

* If $f(t)=t$ then $f(t-1)=t-1 \quad y\{t\}=\frac{1}{s^{2}}$

A Couple of Useful Results
Another formulation of this translation theorem is
(1) $\mathscr{L}\{g(t) \mathscr{U}(t-a)\}=e^{-a s} \mathscr{L}\{g(t+a)\}$.

Note $g(t)=g((t+a)-a)$
Example: Find $\mathscr{L}\left\{\cos t \mathscr{U}\left(t-\frac{\pi}{2}\right)\right\}$ He ne $a=\frac{\pi}{2}$

$$
=e^{-\frac{\pi}{2} s} \mathscr{L}\left\{\cos \left(t+\frac{\pi}{2}\right)\right\}
$$

use $\cos (A+B)=\cos A \cos B-\sin A \sin B$
so $\cos (t+\pi / 2)=\cos t \cos \pi / 2-\sin t \sin \pi / 2=-\sin t$

$$
\begin{aligned}
\mathscr{L}\{\cos t u(t-\pi / 2)\} & =e^{-\frac{\pi}{2} s} y\{\cos (t+\pi / 2)\} \\
& =e^{-\frac{\pi}{2} s} y\{-\sin t\} \\
& =-e^{-\frac{\pi}{2} s} \frac{1}{s^{2}+1^{2}} \\
& =\frac{-e^{-\frac{\pi}{2} s}}{s^{2}+1}
\end{aligned}
$$

A Couple of Useful Results
The inverse form of this translation theorem is
(2) $\mathscr{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) \mathscr{U}(t-a)$.

Example: Find $\mathscr{L}^{-1}\left\{\frac{e^{-2 s}}{s(s+1)}\right\}$
Step 1: Ignore the exponential
What we need is $\mathcal{L}^{-1}\left\{\frac{1}{s(s+1)}\right\}$
Particle Fraction: $\frac{1}{s(s+1)}=\frac{A}{S}+\frac{B}{s+1}$

$$
1=A(S+1)+B S
$$

Set $s=0 \quad 1=A(0+1)+B \cdot 0=A \Rightarrow A=1$

$$
\begin{array}{rl}
s=-1 & I=A(-1+1)+B(-1)=-B \Rightarrow B=-1 \\
\mathcal{L}^{-1}\left\{\frac{1}{s(s+1)}\right\} & =\mathcal{L}^{-1}\left\{\frac{1}{s}-\frac{1}{s+1}\right\} \\
& =\mathcal{L}^{-1}\left\{\frac{1}{s}\right\}-\mathcal{L}^{-1}\left\{\frac{1}{s+1}\right\} \\
& =1-e^{-t}
\end{array}
$$

Step 2
find the inverse trenstorm

So our $f(t)=1-e^{-t}$

$$
\begin{aligned}
\mathcal{Z}^{-1}\left\{\frac{e^{-2 s}}{s(s+1)}\right\} & =f(t-2) u(t-2) \\
& =\left(1-e^{-(t-2)}\right) u(t-2) \\
& =u(t-2)-e^{-(t-2)} u(t-2)
\end{aligned}
$$

Step 3:
Use the
Shifting theorem

Section 16: Laplace Transforms of Derivatives and IVPs
Suppose f has a Laplace transform and that f is differentiable on $[0, \infty)$. Obtain an expression for the Laplace tranform of $f^{\prime}(t)$. (Assume f is of exponential order c for some c.)

$$
\begin{aligned}
\mathscr{L}\left\{f^{\prime}(t)\right\}=\int_{0}^{\infty} e^{-s t} f^{\prime}(t) d t & \left.\begin{array}{l}
\text { Int. bo parts } \\
u=e^{-s t} d u
\end{array}\right)=-s e^{-s t} d t \\
=\left.e^{-s t} f(t)\right|_{0} ^{\infty}-\int_{0}^{\infty}\left(-s e^{-s t} f(t) d t\right. & v=f(t) \quad d v=f^{\prime}(t) d t \\
=\left(0-e^{0} f(0)\right)+s \int_{0}^{\infty} e^{-s t} f(t) d t & \text { for } s>C
\end{aligned}
$$

$$
\begin{aligned}
= & -f(0)+s \mathscr{L}\{f(t)\} \\
& \text { If } F(s)=\mathscr{L}\{f(t)\}
\end{aligned}
$$

Then $\mathscr{L}\left\{f^{\prime}(t)\right\}=s F(s)-f(0)$

Transforms of Derivatives

If $\mathscr{L}\{f(t)\}=F(s)$, we have $\mathscr{L}\left\{f^{\prime}(t)\right\}=s F(s)-f(0)$. We can use this relationship recursively to obtain Laplace transforms for higher derivatives of f.

For example

$$
\begin{aligned}
\mathscr{L}\left\{f^{\prime \prime}(t)\right\} & =s \mathscr{L}\left\{f^{\prime}(t)\right\}-f^{\prime}(0) \\
& =s(s F(s)-f(0))-f^{\prime}(0) \\
& =s^{2} F(s)-s f(0)-f^{\prime}(0)
\end{aligned}
$$

Transforms of Derivatives

For $y=y(t)$ defined on $[0, \infty)$ having derivatives $y^{\prime}, y^{\prime \prime}$ and so forth, if

$$
\mathscr{L}\{y(t)\}=Y(s)
$$

then

$$
\begin{gathered}
\mathscr{L}\left\{\frac{d y}{d t}\right\}=s Y(s)-y(0) \\
\mathscr{L}\left\{\frac{d^{2} y}{d t^{2}}\right\}=s^{2} Y(s)-s y(0)-y^{\prime}(0) \\
\vdots \\
\mathscr{L}\left\{\frac{d^{n} y}{d t^{n}}\right\}=s^{n} Y(s)-s^{n-1} y(0)-s^{n-2} y^{\prime}(0)-\cdots-y^{(n-1)}(0)
\end{gathered}
$$

Differential Equation
For constants a, b, and c, take the Laplace transform of both sides of the equation

$$
\begin{aligned}
& \quad a y^{\prime \prime}+b y^{\prime}+c y=g(t), \quad y(0)=y_{0}, \quad y^{\prime}(0)=y_{1} \\
& \text { Let } \mathcal{L}\{y\}=Y(s) \text { and } \mathscr{L}\{g\}=G(s) \\
& \mathcal{L}\left\{a y^{\prime \prime}+b y^{\prime}+c y\right\}=\mathcal{L}\{g(t)\} \\
& a \mathcal{L}\left\{y^{\prime \prime}\right\}+b \mathcal{L}\left\{y^{\prime}\right\}+c \mathcal{L}\{y\}=G(s)
\end{aligned}
$$

$$
a\left(s^{2} Y(s)-s y(0)-y^{\prime}(0)\right)+b(s Y(s)-y(0))+c Y(s)=G(s)
$$

well finish on thursday.

