April 21 Math 2306 sec 59 Spring 2016

Section 16: Laplace Transforms of Derivatives and IVPs
If $\mathscr{L}\{f(t)\}=F(s)$, we have $\quad \mathscr{L}\left\{f^{\prime}(t)\right\}=s F(s)-f(0)$.
Extending this

$$
\begin{aligned}
\mathscr{L}\left\{f^{\prime \prime}(t)\right\} & =s \mathscr{L}\left\{f^{\prime}(t)\right\}-f^{\prime}(0) \\
& =s(s F(s)-f(0))-f^{\prime}(0) \\
& =s^{2} F(s)-s f(0)-f^{\prime}(0)
\end{aligned}
$$

Similarly $\mathscr{L}\left\{f^{\prime \prime \prime}(t)\right\}=s^{3} F(s)-s^{2} f(0)-s f^{\prime}(0)-f^{\prime \prime}(0)$.

Transforms of Derivatives

For $y=y(t)$ defined on $[0, \infty)$ having derivatives $y^{\prime}, y^{\prime \prime}$ and so forth, if

$$
\mathscr{L}\{y(t)\}=Y(s)
$$

then

$$
\begin{gathered}
\mathscr{L}\left\{\frac{d y}{d t}\right\}=s Y(s)-y(0) \\
\mathscr{L}\left\{\frac{d^{2} y}{d t^{2}}\right\}=s^{2} Y(s)-s y(0)-y^{\prime}(0) \\
\vdots \\
\mathscr{L}\left\{\frac{d^{n} y}{d t^{n}}\right\}=s^{n} Y(s)-s^{n-1} y(0)-s^{n-2} y^{\prime}(0)-\cdots-y^{(n-1)}(0)
\end{gathered}
$$

Differential Equation
For constants a, b, and c, take the Laplace transform of both sides of the equation

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t), \quad y(0)=y_{0}, \quad y^{\prime}(0)=y_{1}
$$

Let $\mathscr{L}\{y(t)\}=Y(s)$ and $\mathscr{L}\{g(t)\}=G(s)$

$$
\begin{aligned}
& \mathcal{L}\left\{a y^{\prime \prime}+b y^{\prime}+c y\right\}=\mathcal{L}\{g(t)\} \\
& a \mathcal{L}\left\{y^{\prime \prime}\right\}+b \mathcal{L}\left\{y^{\prime}\right\}+c \mathcal{L}\{y\}=\mathcal{L}\{g(t)\} \\
& a\left(s^{2} Y(s)-s y(0)-y^{\prime}(0)\right)+b(s Y(s)-y(0))+c Y(s)=G(s)
\end{aligned}
$$

Let's isolate $Y(s)$

$$
\begin{gathered}
a s^{2} Y(s)-a s y(0)-a y^{\prime}(0)+b s Y(s)-b y(0)+c Y(s)=G(s) \\
\left(a s^{2}+b s+c\right) Y(s)-a s y(0)-a y^{\prime}(0)-b y(0)=G(s) \\
\left(a s^{2}+b s+c\right) Y(s)-a y_{0} s-a y_{1}-b y_{0}=G(s) \\
\left(a s^{2}+b s+c\right) Y(s)=a y_{0} s+a y_{1}+b y_{0}+G(s) \\
Y(s)=\frac{a y_{0} s+a y_{1}+b y_{0}}{a s^{2}+b s+c}+\frac{G(s)}{a s^{2}+b s+c}
\end{gathered}
$$

This is the Loploee transform of the solution $b(t)$ to the IV P.

To solve the IVP tole the inverse transform

$$
y(t)=\mathcal{L}^{-1}\{Y(s)\}
$$

Solving IVPs

Figure: We use the Laplace transform to turn our DE into an algebraic equation. Solve this transformed equation, and then transform back.

General Form

We get

$$
Y(s)=\frac{Q(s)}{P(s)}+\frac{G(s)}{P(s)}
$$

where Q is a polynomial with coefficients determined by the initial conditions, G is the Laplace transform of $g(t)$ and P is the characteristic polynomial of the original equation.
$\mathscr{L}^{-1}\left\{\frac{Q(s)}{P(s)}\right\} \quad$ is called the zero input response,
and
$\mathscr{L}^{-1}\left\{\frac{G(s)}{P(s)}\right\} \quad$ is called the zero state response.

Solve the IVP using the Laplace Transform
(a) $\quad \frac{d y}{d t}+3 y=2 t \quad y(0)=2$

Take $\mathscr{L}\}$ of both sides.

$$
\begin{aligned}
& \mathcal{L}\left\{\frac{d y}{d t}+3 y\right\}=\mathcal{L}\{z t\} \\
& \mathcal{L}\left\{\frac{d y}{d t}\right\}+3 \mathcal{L}\{y\}=2 \mathcal{L}\{t\} \\
& S Y(s)-y(0)+3 Y(s)=2 \frac{1}{s^{2}}
\end{aligned}
$$

$$
(s+3) Y(s)-2=\frac{2}{s^{3}} \Rightarrow(s+3) Y(s)=\frac{2}{s^{2}}+2
$$

$$
Y(s)=\frac{2}{s^{2}(s+3)}+\frac{2}{s+3}
$$

we ned $\mathcal{X}^{-1}\{Y(s)\}$. Do partial fraction de comp on the first tern.

$$
\begin{aligned}
s^{2}(s+3) \frac{2}{s^{2}(s+3)} & =\frac{A}{s}+\frac{B}{s^{2}}+\frac{C}{s+3} \quad s^{2}(s+3) \\
2 & =A s(s+3)+B(s+3)+C s^{2} \\
& =A\left(s^{2}+3 s\right)+B(s+3)+C s^{2} \\
0 s^{2}+0 s+2 & =(A+C) s^{2}+(3 A+B) s+3 B
\end{aligned}
$$

$$
\left.\begin{array}{rl}
A+C=0 & \Rightarrow C=-A \\
3 A+B=0 & \Rightarrow A=-\frac{1}{3} B \\
3 B=2 & \Rightarrow B=2 / 3
\end{array}\right\} \Rightarrow A=\frac{-1}{3} \cdot \frac{2}{3}=\frac{-2}{9} \quad C=\frac{2}{9}
$$

so

$$
\begin{aligned}
& Y(s)=\frac{-2 / q}{s}+\frac{2 / 3}{s^{2}}+\frac{2 / q}{s+3}+\frac{2}{s+3} \quad 2+\frac{2}{9}=\frac{20}{9} \\
& Y(s)=\frac{-2 / q}{s}+\frac{2 / 3}{s^{2}}+\frac{20 / q}{s+3} \\
& y(t)=f^{-1}\{Y(s)\} \quad \text { Now } \quad \text { take } \mathcal{L}^{-1}\{Y(s)\}
\end{aligned}
$$

$$
\begin{aligned}
y(t) & =\mathcal{L}^{-1}\left\{\frac{-2 / 9}{s}+\frac{2 / 3}{s^{2}}+\frac{20 / 9}{s+3}\right\} \\
& =-\frac{2}{9} \mathcal{L}^{-1}\left\{\frac{1}{s}\right\}+\frac{2}{3} \mathcal{L}^{-1}\left\{\frac{1}{s^{2}}\right\}+\frac{20}{9} \mathcal{L}^{-1}\left\{\frac{1}{s+3}\right\} \\
& =\frac{-2}{9} \cdot 1+\frac{2}{3} t+\frac{20}{9} e^{-3 t} \\
& y(t)=\frac{-2}{9}+\frac{2}{3} t+\frac{20}{9} e^{-3 t}
\end{aligned}
$$

Solve the IVP using the Laplace Transform

$$
\begin{aligned}
& y^{\prime \prime}+4 y^{\prime}+4 y=t e^{-2 t} \quad y(0)=1, y^{\prime}(0)=0 \quad \text { Let } Y(s)=\mathcal{L}\{y(\nmid\}\} \\
& \mathcal{L}\left\{y^{\prime \prime}+4 y^{\prime}+4 y\right\}=\mathcal{L}\left\{t e^{-2 t}\right\} \\
& \mathcal{L}\left\{y^{\prime \prime}\right\}+4 \mathcal{L}\left\{y^{\prime}\right\}+4 \mathcal{L}\{y\}=\mathcal{L}\left\{t e^{-2 t}\right\} \quad \mathcal{L}\{t\}=\frac{1}{s^{2}} \\
& s^{2} Y(s)-s y(0)-y^{\prime}(0)+Y(s Y(s)-y(0))+4 Y(s)=\frac{1}{(s-(-2))^{2}} \\
& \left(s^{2}+4 s+4\right) Y(s)-s \cdot 1-0-4 \cdot 1=\frac{1}{(s+2)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \left(s^{2}+4 s+4\right) Y(s)-s-4=\frac{1}{(s+2)^{2}} \\
& \left(s^{2}+4 s+4\right) Y(s)=\frac{1}{(s+2)^{2}}+s+4 \\
& Y(s)=\frac{1}{(s+2)^{2}\left(s^{2}+4 s+4\right)}+\frac{s+4}{s^{2}+4 s+4} \\
& Y(s)=\frac{1}{(s+2)^{2}(s+2)^{2}}+\frac{s+4}{(s+2)^{2}} \\
& =\frac{1}{(s+2)^{4}}+\frac{s+2}{(s+2)^{2}}+\frac{2}{(s+2)^{2}}
\end{aligned}
$$

$$
Y(s)=\frac{1}{(s+2)^{4}}+\frac{1}{s+2}+\frac{2}{(s+2)^{2}}
$$

Note:

$$
\begin{aligned}
& \text { iote : } \mathcal{L}\left\{t^{3}\right\}=\frac{3!}{s^{4}} \Rightarrow \frac{1}{s^{4}}=\frac{1}{3!} \mathscr{L}\left\{t^{3}\right\} \\
&=\mathcal{L}\left\{\frac{1}{3!} t^{3}\right\} \\
& \text { so } \mathcal{L}^{-1}\left\{\frac{1}{(s+2)^{4}}\right\}=\frac{1}{3!} t^{3} e^{-2 t} \\
& y(t)=\mathcal{L}^{-1}\{Y(s)\}=\mathscr{L}^{-1}\left\{\frac{1}{(s+2)^{4}}+\frac{1}{s+2}+\frac{2}{(s+2)^{2}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& y(t)=\mathcal{L}^{-1}\left\{\frac{1}{(s+2)^{4}}\right\}+\mathcal{L}^{-1}\left\{\frac{1}{s+2}\right\}+2 \mathcal{L}^{-1}\left\{\frac{1}{(s+2)^{2}}\right\} \\
&=\frac{1}{3!} t^{3} e^{-2 t}+e^{-2 t}+2 t e^{-2 t} \\
& y(t)=\frac{1}{6} t^{3} e^{-2 t}+e^{-2 t}+2 t e^{-2 t}
\end{aligned}
$$

Solve the IVP

An LR-series circuit has inductance $L=1$ h, resistance $R=10 \Omega$, and applied force $E(t)$ whose graph is given below. If the initial current $i(0)=0$, find the current $i(t)$ in the circuit.

$$
L \frac{d i}{d t}+R i=E
$$

LR Circuit Example

$$
\begin{aligned}
E & = \begin{cases}0, & 0 \leq t<1 \\
E_{0}, & 1 \leq t<3 \\
0, & t \geq 3\end{cases} \\
& =0-0 u(t-1)+E_{0} u(t-1)-E_{0} u(t-3)+0 u(t-3) \\
& =E_{0} u(t-1)-E_{0} u(t-3)
\end{aligned}
$$

Our IV P is

$$
\frac{d i}{d t}+10 i=E_{0} u(t-1)-E_{0} u(t-3), i(0)=0
$$

well finish this after Tuesday's exam.

