April 22 Math 2306 sec. 53 Spring 2019

Section 17: Fourier Series: Trigonometric Series
Find the Fourier Series for $f(x)=x,-1<x<1$

$$
\begin{aligned}
& p=1, \quad \frac{n \pi x}{p}=n \pi x \\
& a_{0}=\frac{1}{1} \int_{-1}^{1} f(x) d x=\int_{-1}^{1} x d x=\left.\frac{x^{2}}{2}\right|_{-1} ^{1}=\frac{1^{2}}{2}-\frac{(-1)^{2}}{2}=0 \\
& a_{n}=\frac{1}{1} \int_{-1}^{1} f(x) \cos \left(\frac{n \pi x}{1}\right) d x=\int_{-1}^{1} x \cos (n \pi x) d x \\
&=\left[\frac{x}{n \pi} \sin (n \pi x)+\left.\frac{1}{n^{2} \pi^{2}} \cos (n \pi x)\right|_{-1} ^{1}\right.
\end{aligned}
$$

$$
=\frac{1}{n^{2} \pi^{2}} \operatorname{Cos}(n \pi)-\frac{1}{n^{2} \pi^{2}} \operatorname{Cos}(-n \pi)=0
$$

So $a_{n}=0$ for $n=0,1,2, \ldots$

$$
\begin{aligned}
b_{n} & =\frac{1}{1} \int_{-1}^{1} f(x) \sin \left(\frac{n \pi x}{1}\right) d x \\
& =\int_{-1}^{1} x \sin (n \pi x) d x \\
& =\left[\frac{-x}{n \pi} \cos (n \pi x)+\left.\frac{1}{n^{2} \pi^{2}} \sin (n \pi x)\right|_{-1} ^{1}\right. \\
& =\frac{-1}{n \pi} \cos (n \pi)-\frac{-(-1)}{n \pi} \cos (-n \pi)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-1}{n \pi}(-1)^{n}-\frac{1}{n \pi}(-1)^{n}=\frac{-2}{n \pi}(-1)^{n}=\frac{2}{n \pi}(-1)^{n+1} \\
& \left.a_{n}=0 \quad n=0,1\right)^{2}, \ldots \text { and } \\
& b_{n}=\frac{2}{n \pi}(-1)^{n+1} \\
& f(x)=\sum_{n=1}^{\infty} \frac{2}{n \pi}(-1)^{n+1} \sin (n \pi x)
\end{aligned}
$$

Symmetry

For $f(x)=x, \quad-1<x<1$

$$
f(x)=\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n \pi} \sin (n \pi x)
$$

Observation: f is an odd function. It is not surprising then that there are no nonzero constant or cosine terms (which have even symmetry) in the Fourier series for f.

The following plots show f, f plotted along with some partial sums of the series, and f along with a partial sum of its series extended outside of the original domain $(-1,1)$.

Figure: Plot of $f(x)=x$ for $-1<x<1$

Figure: Plot of $f(x)=x$ for $-1<x<1$ with two terms of the Fourier series.

Figure: Plot of $f(x)=x$ for $-1<x<1$ with 10 terms of the Fourier series

Figure: Plot of $f(x)=x$ for $-1<x<1$ with the Fourier series plotted on $(-3,3)$. Note that the series repeats the profile every 2 units. At the jumps, the series converges to $(-1+1) / 2=0$.

Section 18: Sine and Cosine Series

Functions with Symmetry

Recall some definitions:

Suppose f is defined on an interval containing x and $-x$.

If $f(-x)=f(x)$ for all x, then f is said to be even.
If $f(-x)=-f(x)$ for all x, then f is said to be odd.

For example, $f(x)=x^{n}$ is even if n is even and is odd if n is odd. The trigonometric function $g(x)=\cos x$ is even, and $h(x)=\sin x$ is odd.

Integrals on symmetric intervals

If f is an even function on $(-p, p)$, then

$$
\int_{-p}^{p} f(x) d x=2 \int_{0}^{p} f(x) d x
$$

If f is an odd function on $(-p, p)$, then

$$
\int_{-p}^{p} f(x) d x=0
$$

Products of Even and Odd functions

$$
\text { Even } \times \text { Even }=\text { Even, }
$$

and
Odd \times Odd $=$ Even.
While
Even \times Odd $=$ Odd.

So, suppose f is even on $(-p, p)$. This tells us that $f(x) \cos (n x)$ is even for all n and $f(x) \sin (n x)$ is odd for all n.

And, if f is odd on $(-p, p)$. This tells us that $f(x) \sin (n x)$ is even for all n and $f(x) \cos (n x)$ is odd for all n

Fourier Series of an Even Function

If f is even on $(-p, p)$, then the Fourier series of f has only constant and cosine terms. Moreover

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{p}\right)
$$

where
$a_{0}=\frac{2}{p} \int_{0}^{p} f(x) d x$
and
$a_{n}=\frac{2}{p} \int_{0}^{p} f(x) \cos \left(\frac{n \pi x}{p}\right) d x$.

Fourier Series of an Odd Function

If f is odd on $(-p, p)$, then the Fourier series of f has only sine terms. Moreover

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{p}\right)
$$

where
$b_{n}=\frac{2}{p} \int_{0}^{p} f(x) \sin \left(\frac{n \pi x}{p}\right) d x$.

Find the Fourier series of f

$$
f(x)=\left\{\begin{array}{l}
x+\pi, \quad-\pi<x<0 \\
\pi-x, \quad 0 \leq x<\pi
\end{array}\right.
$$

As f is even $b_{n}=0$ for all n

$$
\begin{aligned}
& a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=\frac{2}{\pi} \int_{0}^{\pi} f(x) d x \\
&=\frac{2}{\pi} \int_{0}^{\pi}(\pi-x) d x \\
&=\frac{2}{\pi}\left[\pi x-\left.\frac{x^{2}}{2}\right|_{0} ^{\pi}\right. \\
&=\frac{2}{\pi}\left[\pi^{2}-\frac{\pi^{2}}{2}\right]=\frac{2}{\pi}\left(\frac{\pi^{2}}{2}\right)=\pi
\end{aligned}
$$

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos (n x) d x \\
& =\frac{2}{\pi} \int_{0}^{\pi}(\pi-x) \cos (n x) d x \\
& =\frac{2}{\pi}\left[\frac{\pi-x}{n} \sin (n x)+\left.\frac{1}{n^{2}} \cos (n x)\right|_{0} ^{\pi}\right. \\
& =\frac{2}{\pi}\left[\frac{1}{n^{2}} \cos (n \pi)-\frac{1}{n^{2}} \cos (0)\right]=\frac{2}{n^{2} \pi}\left((-1)^{n}-1\right)
\end{aligned}
$$

So

$$
f(x)=\frac{\pi}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi}\left((-1)^{n}-1\right) \cos (n x)
$$

Half Range Sine and Half Range Cosine Series

Suppose f is only defined for $0<x<p$. We can extend f to the left, to the interval $(-p, 0)$, as either an even function or as an odd function. Then we can express f with two distinct series:

Half range cosine series $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{p}\right)$
where $\quad a_{0}=\frac{2}{p} \int_{0}^{p} f(x) d x$ and $a_{n}=\frac{2}{p} \int_{0}^{p} f(x) \cos \left(\frac{n \pi x}{p}\right) d x$.

Half range sine series $f(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{p}\right)$
where $\quad b_{n}=\frac{2}{p} \int_{0}^{p} f(x) \sin \left(\frac{n \pi x}{p}\right) d x$.

Extending a Function to be Odd

Graph of Odd Extension of $f(x)$

Figure: $f(x)=p-x, 0<x<p$ together with its odd extension.

Extending a Function to be Even

Graph of Even Extension of $f(x)$

Figure: $f(x)=p-x, 0<x<p$ together with its even extension.

