April 24 MATH 1112 sec. 54 Spring 2019

Section 8.1: The Laws of Sines and Cosines

In order to use the Law of Sines, we must know one angle-side pair (e.g. A and a). Since each angle is greater than 0° and less than 180°, all sine values are positive. So the law can be stated as

Law of Sines:

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

or

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

The Law of Sines can be used for AAS, ASA, or SSA. We still have to consider the SSA case.

Law of Sines: Ambiguous Case (SSA)

Given two sides and an angle not between them, the information may correspond to one triangle, two triangles, or no triangles.

Figure: If $a>h=b \sin A$, there can be two different triangles with the same a, b, and A. Since B isn't known, it might be acute or obtuse. Since c isn't known, it may be long or short.

Law of Sines: Ambiguous Case (SSA)

Figure: Remember that $\sin \left(180^{\circ}-\theta\right)=\sin \theta$. So if we know the number $\sin B$, it's not clear if we just have one angle B, or two angles B and $180^{\circ}-B$.

Law of Sines: Ambiguous Case (SSA)

We don't have to memorize cases! We can always check to see if zero, one, or two triangles exist.

Suppose we know sides a and b and the angle A. Then

$$
\text { set } \sin B=\frac{b \sin A}{a} \text {. }
$$

- If this number is >1, there are no triangles. (A sine can't be bigger than 1!)
- Otherwise, let $B_{1}=\sin ^{-1}\left(\frac{b \sin A}{a}\right)$ and let $B_{2}=180^{\circ}-B_{1}$.
- If $B_{2}+A \geq 180^{\circ}$, then there is exactly one triangle.
- If $B_{2}+A<180^{\circ}$ there are two triangles. (There's still room for a third angle.)

Exampe 1 (SSA)
Solve for all possible triangles. $C=42^{\circ}, \quad b=9, \quad c=3$

we have the side-anghe pair

$$
C+c
$$

Ry low of Sines

$$
\begin{aligned}
& \frac{\sin B}{b}=\frac{\sin C}{c} \Rightarrow \sin B=\frac{b \sin C}{c} \\
& \sin B=\frac{9 \sin 42^{\circ}}{3} \approx 2.007
\end{aligned}
$$

As $\sin B$ cont he greaten than 1,
there is no angle B.
no triangle has $c=42^{\circ}, b=9$ and $c=3$.

$$
\begin{aligned}
& \text { Recall } \quad-1 \leq \sin x \leq 1 \\
& \text { ditto } \\
&-1 \leq \cos x \leq 1
\end{aligned}
$$

Exampe 2 (SSA)
Solve for all possible triangles. $B=18^{\circ}, \quad b=8, \quad a=10$

$$
\sin A=\frac{10 \sin 10^{\circ}}{8} \approx 0.3863
$$

$$
\text { an } A \text { is } A=\sin ^{-1}(0.3863) \approx 22.7^{\circ}
$$

Another possither angle with this sine value is

$$
180^{\circ}-22.7^{\circ} \approx 157.3^{\circ}
$$

Question: Cunld there be 2 triangles, one with $A=22.7^{\circ}$ and another with $A=157.3^{\circ}$?

There are 2 triangles if $B+A$ is less than 180° for both A values.

$$
B+157.3^{\circ}=18^{\circ}+157.3^{\circ}=175.3^{\circ}<0
$$

There is room for a third angle, hence there are 2 triangles.

Triangle wi $A=22.7^{\circ}$

$$
C=180^{\circ}-A-B=180^{\circ}-22.7^{\circ}-18^{\circ}=139.3^{\circ}
$$

$$
\begin{aligned}
& \begin{aligned}
\begin{array}{l}
c \\
\sin C
\end{array}=\frac{b}{\sin B} \Rightarrow c & =\frac{b \sin C}{\sin B}=\frac{8 \sin \left(139.3^{\circ}\right)}{\sin 18^{\circ}} \\
& \approx 16.9
\end{aligned} \\
& \text { For } A=157.3^{\circ}, \quad C=180^{\circ}-157.3^{\circ}-181^{\circ}=4.7^{\circ} \\
& c=\frac{b \sin C}{\sin B}=\frac{8 \sin \left(4.7^{\circ}\right)}{\sin \left(18^{\circ}\right)} \approx 2.1 \\
& \text { Triangle 1: } A=22.7^{\circ}, B=18^{\circ}, C=139.3^{\circ} \\
& a=10 \quad b=8 \quad c=16.9
\end{aligned} \quad \begin{aligned}
& \text { triangle 2: } A=157.3^{\circ} \quad B=18^{\circ} \quad C=4.7^{\circ} \\
& a=10 \quad b=8 \quad C=2.1
\end{aligned}
$$

Exampe 3 (SSA)
Solve for all possible triangles. $A=80^{\circ}, \quad a=6, \quad b=2$

Our side angle pair is A-a

$$
\frac{\sin B}{b}=\frac{\sin A}{a} \Rightarrow \sin B=\frac{b \sin A}{a}
$$

$$
\begin{aligned}
\sin B & =\frac{2 \sin 80^{\circ}}{6}
\end{aligned} \approx 0.3283, ~=\sin ^{-1}(0.3283) \approx 19.2^{\circ}
$$

Another possible B is $B=180^{\circ}-19.2^{\circ}=160.8^{\circ}$

Are then 2 triangle?

$$
80^{\circ}+160.8^{\circ}=240.8^{\circ}>180^{\circ}
$$

These is only, one triangle.
For $A=80^{\circ}, B=19.2^{\circ}$,

$$
C=180^{\circ}-80^{\circ}-19.2^{\circ}=80.8^{\circ}
$$

And

$$
\begin{aligned}
& \text { And } \begin{array}{l}
\frac{c}{\sin C}=\frac{a}{\sin A} \Rightarrow c=\frac{a \sin C}{\sin A}=\frac{6 \sin \left(80.8^{\circ}\right)}{\sin 80^{\circ}} \\
\\
\end{array} \quad \begin{aligned}
A=80^{\circ}, \quad B=19.2^{\circ}, C & =80.8^{\circ} \\
a=6 \quad b=2 \quad c & =6.01
\end{aligned}
\end{aligned}
$$

$$
\approx 6.01
$$

Section 8.2: The Law of Cosines
Suppose we wish to solve a triangle given

$$
A=40^{\circ}, \quad b=2, \quad c=3
$$

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

we don't have any side/ angle pair.

The law of sines wont help.

The Law of Cosines

Theorem: For the triangle labeled using the previous convention, all three of the following equations hold

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& b^{2}=a^{2}+c^{2}-2 a c \cos B \\
& c^{2}=a^{2}+b^{2}-2 a b \cos C
\end{aligned}
$$

This can be used if two sides and an included angle (SAS) are known, or if the three sides (SSS) are known.

Example (SAS)

Solve the triangle given $A=40^{\circ}, \quad b=2, \quad c=3$
we con use

$$
\begin{aligned}
a^{2} & =b^{2}+c^{2}-2 b c \cos A \\
& =2^{2}+3^{2}-2(2)(3) \cos 40^{\circ} \approx 3.807
\end{aligned}
$$

So $a=\sqrt{3.807} \approx 1.95$
we ca find B from the law of sines

$$
\frac{\sin B}{b}=\frac{\sin A}{a} \Rightarrow \sin B=\frac{b \sin A}{a}
$$

$$
\begin{aligned}
\sin B & =\frac{2 \sin 40^{\circ}}{1.95} \approx 0.6598 \\
B & \approx \sin ^{-1}(0.6589) \approx 41.2^{\circ}
\end{aligned}
$$

Then $C=180^{\circ}-A-B=180^{\circ}-40^{\circ}-41.2^{\circ} \approx 98.8^{\circ}$

$$
\begin{aligned}
& A=40^{\circ} \quad B=41.2^{\circ} \quad C=98.8^{\circ} \\
& a=1.95 \quad b=2 \quad c=3
\end{aligned}
$$

