April 24 Math 2306 sec. 53 Spring 2019

Section 18: Sine and Cosine Series
Functions with Symmetry

If f is even on (—p, p), then the Fourier series of f has only constant
and cosine terms. Moreover
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Fourier Series of an Odd Function

If fis odd on (—p, p), then the Fourier series of f has only sine terms.
Moreover
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Half Range Sine and Half Range Cosine Series
Suppose f is only defined for 0 < x < p. We can extend f to the left, to

the interval (—p, 0), as either an even function or as an odd function.
Then we can express f with two distinct series:

o
Half range cosine series  f(x =5 Z ancos ( >

P
where ap = 2/ f(x)dx and a,= 2/ f(x) cos (mTX) ax.
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Half range sine series f(x Z bp sin <n2x>

n=1
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Find the Half Range Sine Series of f

flx)=2—-x, 0<x<2 (PTQ
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Integrating by parts gives (up to an added constant)

/(2 ~X)sin <?) o = _2(2n; ) cos (mer) - n247rz sin (szX)

April 23, 2019 4/22




Z(z -3
a}(n“’)(\ S»\ /AS

e 20 g (o) 229 £, (m

,\\{ nt

c Yy
nw
;%o (?)
T»\L Seals hES ‘le.)" nw " z

April 23, 2019 5/22



Find the Half Range Cosine Series of f

fx)y=2—-—x, 0<x<2

T
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Integrating by parts gives (up to an added constant)

/(2 X) cos <n2 ) ox = Z(Zn; i (mer) N n247T2 cos (?)
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Example Continued...

We have two different half range series:

Half range sine: f(x) = Z ni sin (@)
s
Half range cosine: f(x) =1+ 4(1n()) cos (—mx) :

We have two different series representations for this function each of
which converge to f(x) on the interval (0, 2). The following plots show
graphs of f along with partial sums of each of the series. When we plot
over the interval (—2,2) we see the two different symmetries. Plotting
over a larger interval such as (—6, 6) we can see the periodic
extensions of the two symmetries.
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Plots of f with Half range series
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Figure: f(x) =2 — x, 0 < x < 2 with 10 terms of the sine series.
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Plots of f with Half range series
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Figure: f(x) =2 — x,
series plotted over (—



Plots of f with Half range series
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Figure: f(x) =2 — x, 0 < x < 2 with 5 terms of the cosine series.
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Plots of f with Half range series
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Figure: f(x) =2 — x,
series plotted over (—



Solution of a Differential Equation

An undamped spring mass system has a mass of 2 kg attached to a
spring with spring constant 128 N/m. The mass is driven by an
external force f(t) = 2t for —1 < t < 1 that is 2-periodic so that

f(t+2) = f(t) for all t > 0. Determine a particular solution x, for the
displacement for t > 0.
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We found last time that if f(x) = x on (-1, 1), then
=> 3 )™ sin(nmx)
nm
n=1

We can use this to express our function f(t) =2ton (—1,1) as a
Fourier series

f(t) = 22 )™ sin(nrt)
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