April 24 Math 2306 sec. 53 Spring 2019

Section 18: Sine and Cosine Series

Functions with Symmetry

If f is even on $(-p, p)$, then the Fourier series of f has only constant and cosine terms. Moreover

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{p}\right)
$$

where
$a_{0}=\frac{2}{p} \int_{0}^{p} f(x) d x$
and
$a_{n}=\frac{2}{p} \int_{0}^{p} f(x) \cos \left(\frac{n \pi x}{p}\right) d x$.

Fourier Series of an Odd Function

If f is odd on $(-p, p)$, then the Fourier series of f has only sine terms. Moreover

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{p}\right)
$$

where
$b_{n}=\frac{2}{p} \int_{0}^{p} f(x) \sin \left(\frac{n \pi x}{p}\right) d x$.

Half Range Sine and Half Range Cosine Series

Suppose f is only defined for $0<x<p$. We can extend f to the left, to the interval $(-p, 0)$, as either an even function or as an odd function. Then we can express f with two distinct series:

Half range cosine series $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{p}\right)$
where $\quad a_{0}=\frac{2}{p} \int_{0}^{p} f(x) d x$ and $a_{n}=\frac{2}{p} \int_{0}^{p} f(x) \cos \left(\frac{n \pi x}{p}\right) d x$.

Half range sine series $f(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{p}\right)$
where $\quad b_{n}=\frac{2}{p} \int_{0}^{p} f(x) \sin \left(\frac{n \pi x}{p}\right) d x$.

Find the Half Range Sine Series of f

$$
\begin{aligned}
& f(x)=2-x, \quad 0<x<2 \quad \mathbb{P}=2 \\
& \frac{n \pi x}{p}=\frac{n \pi x}{2} \\
& b_{n}=\frac{2}{2} \int_{0}^{2} f(x) \sin \left(\frac{n \pi x}{2}\right) d x \\
&=\int_{0}^{2}(2-x) \sin \left(\frac{n \pi x}{2}\right) d x
\end{aligned}
$$

Integrating by parts gives (up to an added constant)

$$
\int(2-x) \sin \left(\frac{n \pi x}{2}\right) d x=-\frac{2(2-x)}{n \pi} \cos \left(\frac{n \pi x}{2}\right)-\frac{4}{n^{2} \pi^{2}} \sin \left(\frac{n \pi x}{2}\right)
$$

$$
\begin{aligned}
& =\frac{-2(2-x)}{n \pi} \cos \left(\frac{n \pi x}{2}\right)-\left.\frac{4}{n^{2} \pi^{2}} \sin \left(\frac{n \pi x}{2}\right)\right|_{0} ^{2} \\
& =\frac{-2(2-2)}{n \pi} \cos \left(\frac{n \pi^{2}}{2}\right)-\frac{-2(2-0)}{n \pi} \cos (0) \\
& =\frac{4}{n \pi}
\end{aligned}
$$

The senies is $f(x)=\sum_{n=1}^{\infty} \frac{4}{n \pi} \sin \left(\frac{n \pi x}{2}\right)$

Find the Half Range Cosine Series of f

$$
\begin{gathered}
f(x)=2-x, \quad 0<x<2 \\
a_{0}=\frac{2}{2} \int_{0}^{2} f(x) d x=\int_{0}^{2}(2-x) d x=2 x-\left.\frac{x^{2}}{2}\right|_{0} ^{2}=4-2=2 \\
a_{n}=\frac{2}{2} \int_{0}^{2} f(x) \cos \left(\frac{n \pi x}{2}\right) d x=\int_{0}^{2}(2-x) \cos \left(\frac{n \pi x}{2}\right) d x
\end{gathered}
$$

Integrating by parts gives (up to an added constant)

$$
\int(2-x) \cos \left(\frac{n \pi x}{2}\right) d x=\frac{2(2-x)}{n \pi} \sin \left(\frac{n \pi x}{2}\right)-\frac{4}{n^{2} \pi^{2}} \cos \left(\frac{n \pi x}{2}\right)
$$

$$
\begin{aligned}
a_{n} & =\frac{2(2-x)}{n \pi} \operatorname{Sin}\left(\frac{n \pi x}{2}\right)-\left.\frac{4}{n^{2} \pi^{2}} \operatorname{Cos}\left(\frac{n \pi x}{2}\right)\right|_{0} ^{2} \\
& =\frac{-4}{n^{2} \pi^{2}} \operatorname{Cos}(n \pi)-\frac{-4}{n^{2} \pi^{2}} \operatorname{Cor}(0) \\
& =\frac{-4}{n^{2} \pi^{2}}\left((-1)^{n}-1\right)=\frac{4}{n^{2} \pi^{2}}\left(1-(-1)^{n}\right)
\end{aligned}
$$

So the cosine shies is

$$
f(x)=1+\sum_{n=1}^{\infty} \frac{4}{n^{2} \pi^{2}}\left(1-(-1)^{n}\right) \cos \left(\frac{n \pi x}{2}\right)
$$

Example Continued...

We have two different half range series:

$$
\text { Half range sine: } \quad f(x)=\sum_{n=1}^{\infty} \frac{4}{n \pi} \sin \left(\frac{n \pi x}{2}\right)
$$

Half range cosine: $f(x)=1+\sum_{n=1}^{\infty} \frac{4\left(1-(-1)^{n}\right)}{n^{2} \pi^{2}} \cos \left(\frac{n \pi x}{2}\right)$.
We have two different series representations for this function each of which converge to $f(x)$ on the interval $(0,2)$. The following plots show graphs of f along with partial sums of each of the series. When we plot over the interval $(-2,2)$ we see the two different symmetries. Plotting over a larger interval such as $(-6,6)$ we can see the periodic extensions of the two symmetries.

Plots of f with Half range series

Figure: $f(x)=2-x, 0<x<2$ with 10 terms of the sine series.

Plots of f with Half range series

Figure: $f(x)=2-x, 0<x<2$ with 10 terms of the sine series, and the series plotted over $(-6,6)$

Plots of f with Half range series

Figure: $f(x)=2-x, 0<x<2$ with 5 terms of the cosine series.

Plots of f with Half range series

Figure: $f(x)=2-x, 0<x<2$ with 5 terms of the cosine series, and the series plotted over $(-6,6)$

Solution of a Differential Equation

An undamped spring mass system has a mass of 2 kg attached to a spring with spring constant $128 \mathrm{~N} / \mathrm{m}$. The mass is driven by an external force $f(t)=2 t$ for $-1<t<1$ that is 2-periodic so that $f(t+2)=f(t)$ for all $t>0$. Determine a particular solution x_{p} for the displacement for $t>0$.

$$
\begin{aligned}
& \text { The ODE is } m x^{\prime \prime}+k x=f(t) \\
& 2 x^{\prime \prime}+128 x=f(t)
\end{aligned}
$$

Stander form $x^{\prime \prime}+64 x=\frac{1}{2} f(t)$

We found last time that if $f(x)=x$ on $(-1,1)$, then

$$
f(x)=\sum_{n=1}^{\infty} \frac{2}{n \pi}(-1)^{n+1} \sin (n \pi x)
$$

We can use this to express our function $f(t)=2 t$ on $(-1,1)$ as a Fourier series

$$
f(t)=2 \sum_{n=1}^{\infty} \frac{2}{n \pi}(-1)^{n+1} \sin (n \pi t)
$$

OW ODE is

$$
x^{\prime \prime}+64 x=\sum_{n=1}^{\infty} \frac{2}{n \pi}(-1)^{n+1} \sin (n \pi t)
$$

weill use the method of undetermined coefficients Assume

$$
X_{p}=\sum_{n=1}^{\infty}\left(A_{n} \cos (n \pi t)+B_{n} \operatorname{Sin}(n \pi t)\right)
$$

It's left to the reade to show that $A_{n}=0$ for all n. So well find the BS.

$$
x_{p}=\sum_{n=1}^{\infty} B_{n} \sin (n \pi t)
$$

we need $x_{p}^{\prime \prime}$

$$
x_{p}^{\prime}=\sum_{n=1}^{x_{p}^{\prime \prime}} B_{n}(n \pi) \cos (n \pi t)
$$

$$
X_{p}^{\prime \prime}=\sum_{n=1}^{\infty} B_{n}\left(-(n \pi)^{2} \sin (n \pi t)\right)
$$

plug into $\quad x_{p}{ }^{\prime \prime}+64 x_{p}$

$$
\begin{array}{r}
\sum_{n=1}^{\infty}-(n \pi)^{2} B_{n} \sin (n \pi t)+64 \sum_{n=1}^{\infty} B_{n} \sin (n \pi t)= \\
\sum_{n=1}^{\infty} \frac{2}{n \pi}(-1)^{n+1} \sin (n \pi t) \\
\sum_{n=1}^{\infty}\left[-(n \pi)^{2} B_{n} \operatorname{Sin}(n \pi t)+64 B_{n} \sin (n \pi t)\right]
\end{array}
$$

$$
\begin{gathered}
=\sum_{n=1}^{\infty} \frac{2}{n \pi}(-1)^{n+1} \sin (n \pi t) \\
\sum_{n=1}^{\infty}\left(64-n^{2} \pi^{2}\right) B_{n} \sin (n \pi t)=\sum_{n=1}^{\infty} \frac{2}{n \pi}(-1)^{n+1} \sin (n \pi t)
\end{gathered}
$$

match coefficients
For each $n \geq 1$

$$
\left(64-n^{2} \pi^{2}\right) B_{n}=\frac{2}{n \pi}(-1)^{n+1}
$$

Since $64-n^{2} \pi^{2} \neq 0$ for all n

$$
B_{n}=\frac{2}{n \pi\left(64-n^{2} \pi^{2}\right)}(-1)^{n+1}
$$

So the particular solution

$$
x_{p}=\sum_{n=1}^{\infty} \frac{2}{\left.n \pi\left(64-n^{2} \pi^{2}\right)^{(-1)^{n+1}} \sin (n \pi t)\right)}
$$

