April 26 MATH 1112 sec. 54 Spring 2019

Section 8.1: The Laws of Sines and Cosines

In order to use the Law of Sines, we must know one angle-side pair (e.g. A and a). Since each angle is greater than 0° and less than 180°, all sine values are positive. So the law can be stated as

Law of Sines:

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

or

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

The Law of Sines can be used for AAS, ASA, or SSA.

Section 8.2: The Law of Cosines

Theorem: For the triangle labeled using the previous convention, all three of the following equations hold

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& b^{2}=a^{2}+c^{2}-2 a c \cos B \\
& c^{2}=a^{2}+b^{2}-2 a b \cos C
\end{aligned}
$$

This can be used if two sides and an included angle (SAS) are known, or if the three sides (SSS) are known.

The Law of Cosines \& The Pythagorean Theorem
Apply the law of cosines to a right triangle for which $C=90^{\circ}$; see what it produces.

For hypotenuse c, and sides a, b

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2}-2 a b \cos C \\
c^{2} & =a^{2}+b^{2}-2 a b \cos \left(90^{\circ}\right) \\
& =a^{2}+b^{2}-2 a b(0) \\
c^{2} & =a^{2}+b^{2}
\end{aligned}
$$

So the Pythagorean Thais a specie case of the Low of cosines.

Example (SSS)

Solve the triangle given $a=5, \quad b=2, \quad c=6$
By the Low of cosines

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& 5^{2}=2^{2}+6^{2}-2(2)(6) \cos A \\
& 25=40-24 \cos A \\
&-15=-24 \cos A \Rightarrow \cos A=\frac{15}{24}=\frac{5}{8} \\
& A \approx 51.3^{\circ} \\
& c^{2}=a^{2}+b^{2}-2 a b \cos C
\end{aligned}
$$

$$
\begin{aligned}
& 6^{2}=2^{2}+5^{2}-2(2)(5) \cos C \\
& 36=29-20 \cos C \\
& 7=-20 \cos C \Rightarrow \quad \cos C=\frac{-7}{20} \\
& C \approx 110.5^{\circ} \\
& B=180^{\circ}-A-C=180^{\circ}-51.3^{\circ}-110.5^{\circ} \\
& =18.2^{\circ} \\
& A=51.3^{\circ} \quad B=18.2^{\circ} \quad C=110.5^{\circ} \\
& a=5 \quad b=2 \quad C=6
\end{aligned}
$$

Area of a Triangle

Theorem: The area of a triangle is one half the product of any two sides times the sine of the included angle. That is

$$
\text { Area }=\frac{1}{2} a b \sin C=\frac{1}{2} a c \sin B=\frac{1}{2} b c \sin A \text {. }
$$

There is an alternative theorem that can be used if no angles are known.
Theorem: (Heron's Formula) For the triangle with sides of lengths a, b, and c. Define the semi-perimeter

$$
s=\frac{a+b+c}{2}
$$

The area of the triangle is

$$
\text { Area }=\sqrt{s(s-a)(s-b)(s-c)}
$$

Example

A set designer needs to estimate the amount of paint required to paint a triangular piece of wooden backdrop. Determine the area of the wood piece shown to the nearest tenth of a meter.

Use Heron's formula with $a: 4, b=7, c=9$

$$
\begin{gathered}
s=\frac{1}{2}(a+b+c)=\frac{1}{2}(4+7+9)=10 \\
s-a=10-4=6 \\
s-b=10-7=3 \\
s-c=10-9=1 \\
(\text { Area })^{2}=s(s-a)(s-b)(s-c)=10(6)(3)(1)=180
\end{gathered}
$$

So the area

$$
A=\sqrt{180}=6 \sqrt{5} \approx 13.4
$$

The ave is approximately $13.4 \mathrm{~m}^{2}$

