April 28 Math 2306 sec 58 Spring 2016

Section 16: Laplace Transforms of Derivatives and IVPs
An LR-series circuit has inductance $L=1 \mathrm{~h}$, resistance $R=10 \Omega$, and applied force $E(t)$ whose graph is given below. If the initial current $i(0)=0$, find the current $i(t)$ in the circuit.

$$
L \frac{d i}{d t}+R i=E(t)
$$

$$
E(t)= \begin{cases}0, & 0 \leq t<1 \\ E_{0}, & 1 \leq t<3 \\ 0, & t \geq 3\end{cases}
$$

LR Circuit Example

$$
\begin{aligned}
E(t) & =0-0 u(t-1)+E_{0} u(t-1)-E_{0} u(t-3)+o u(t-3) \\
& =E_{0} u(t-1)-E_{0} u(t-3)
\end{aligned}
$$

Ow IVP is $i^{1}+10 i=E_{0} u(t-1)-E_{0} u(t-3), i(0)=0$
Let $\mathscr{L}\{i\}=I(s)$

$$
\begin{aligned}
& \mathcal{y}\left\{i^{\prime}+10 i\right\}=\mathscr{L}\left\{E_{0} u(t-1)-E_{0} u(t-3)\right\} \\
& \mathcal{L}\left\{i^{\prime}\right\}+10 \mathcal{L}\{i\}=E_{0} \mathcal{L}\{u(t-1)\}-E_{0} \mathscr{L}\{u(t-3)\} \\
& S I(s)-i(0)+10 I(s)=\frac{E_{0}}{s} e^{-s}-\frac{E_{0}}{s} e^{-3 s}
\end{aligned}
$$

$$
\begin{gathered}
(s+10) I(s)=\frac{E_{0}}{s} e^{-s}-\frac{E_{0}}{s} e^{-3 s} \\
I(s)=\frac{E_{0}}{s(s+10)} e^{-s}-\frac{E_{0}}{s(s+10)} e^{-3 s}
\end{gathered}
$$

Let's do partial fractions on $\frac{1}{s(s+10)}$

$$
\begin{aligned}
\frac{1}{s(s+10)} & =\frac{A}{s}+\frac{B}{s+10} \\
1 & =A(s+10)+B s=(A+B) s+10 A
\end{aligned}
$$

$$
\begin{aligned}
& 10 A=1 \Rightarrow A=\frac{1}{10}, A+B=0 \Rightarrow B=-A=\frac{-1}{10} \\
& I(s)=E_{0} e^{-s}\left(\frac{1 / 10}{s}-\frac{1 / 10}{s+10}\right)-E_{0} e^{-3 s}\left(\frac{1 / 10}{s}-\frac{\frac{1}{10}}{s+10}\right) \\
& I(s)=\frac{E_{0}}{\frac{10}{s}} e^{-s}-\frac{\frac{E_{0}}{10}}{s+10} e^{-s}-\frac{E_{0}}{\frac{10}{s}} e^{-3 s}+\frac{\frac{E_{0}}{10}}{s+10} e^{-3 s} \\
& \text { Note } \mathscr{L}^{-1}\left\{\frac{E_{0} / 10}{s}\right\}=\frac{E_{0}}{10} \quad \mathcal{L}^{-1}\left\{\frac{E_{0} / 10}{s+10}\right\}=\frac{E_{0}}{10} e^{-10 t}
\end{aligned}
$$

Take the invense tronsform $i(t)=\mathcal{L}^{-1}\{I(s)\}$

$$
\begin{aligned}
i(t)= & \mathscr{y}^{-1}\left\{\frac{E_{0}}{10} s e^{-s}-\frac{E_{0}}{10} \frac{-s}{s+10} e^{-\frac{E_{0}}{10}} \frac{10}{s} e^{-3 s}+\frac{\frac{E_{0}}{10}}{s+10} e^{-3 s}\right\} \\
= & \frac{E_{0}}{10} u(t-1)-\frac{E_{0}}{10} e^{-10(t-1)} u(t-1)-\frac{E_{0}}{10} u(t-3) \\
& +\frac{E_{0}}{10} e^{-10(t-3)} u(t-3)
\end{aligned}
$$

Let's write $i(x)$ as a pircevised defined function in the stand ard way.

For $0 \leq t<1, t<3 \quad u(t-1)=0$ and $u(t-3)=0$

$$
i(t)=0
$$

For $1 \leq t<3 \quad u(t-1)=1$ and $u(t-3)=0$

$$
i(t)=\frac{E_{0}}{10}-\frac{E_{0}}{10} e^{-10(t-1)}
$$

For $t \geqslant 3, t>1 \quad u(t-1)=1$ and $u(t-3)=1$

$$
\begin{aligned}
i(t) & =\frac{E_{0}}{10}-\frac{E_{0}}{10} e^{-10(t-1)}-\frac{E_{0}}{10}+\frac{E_{0}}{10} e^{-10(t-3)} \\
& =\frac{-E_{0}}{10} e^{-10(t-1)}+\frac{E_{0}}{10} e^{-10(t-3)} \\
& =\frac{E_{0}}{10}\left(e^{-10(t-3)}-e^{-10(t-1)}\right)
\end{aligned}
$$

$$
i(t)=\left\{\begin{array}{l}
0,0 \leq t<1 \\
\frac{E_{0}}{10}-\frac{E_{0}}{10} e^{-10(t-1)}, 1 \leq t<3 \\
\frac{E_{0}}{10}\left(e^{-10(t-3)}-e^{-10(t-1)}\right), 3 \leq t
\end{array}\right.
$$

Solve the IVP

$$
y^{\prime \prime}+y=\underbrace{\left\{\begin{array}{ll}
3, & 0 \leq t<4 \\
2 t-5
\end{array}, \quad t \geq 4\right.}_{f(t)} \quad \quad y(0)=1, \quad y^{\prime}(0)=0
$$

$$
\begin{array}{rlrl}
f(t) & =3-3 u(t-4)+(2 t-5) u(t-4) & \\
& =3+(-3+2 t-5) u(t-4) & & \text { Note: If } \\
& =3+(2 t-8) u(t-4) & & f(t)=2 t \text { then } \\
& =3+2(t-4) u(t-4) & & f(t-4)=2(t-4)
\end{array}
$$

$$
y^{\prime \prime}+y=3+2(t-4) u(t-4), \quad y(0)=1, y^{\prime}(0)=0
$$

Let $Y(s)=\mathscr{L}\{y(t)\}$

$$
\begin{aligned}
& \mathcal{L}\left\{y^{\prime \prime}+y\right\}=\mathcal{L}\{3+2(t-4) u(t-4)\} \\
& \mathcal{L}\left\{y^{\prime \prime}\right\}+\mathcal{L}\{y\}=3 \mathcal{L}\{1\}+2 \mathcal{L}\{(t-4) u(t-4)\} \\
& s^{2} \Psi(s)-s y(0)-y^{\prime}(0)+\Psi(s)=\frac{3}{s}+\frac{2}{s^{2}} e^{-4 s} \\
& \left(s^{2}+1\right) Y(s)-s=\frac{3}{s}+\frac{2}{s^{2}} e^{-4 s}
\end{aligned}
$$

$$
\begin{aligned}
& \left(s^{2}+1\right) Y(s)=\frac{3}{s}+\frac{2}{s^{2}} e^{-4 s}+s \\
& Y(s)=\frac{3}{s\left(s^{2}+1\right)}+\frac{2}{s^{2}\left(s^{2}+1\right)} e^{-4 s}+\frac{s}{s^{2}+1}
\end{aligned}
$$

we need Pantice fraction decon p s on $\frac{3}{s\left(s^{2}+1\right)} \downarrow \frac{2}{s^{2}\left(s^{2}+1\right)}$

$$
\begin{aligned}
\frac{3}{s\left(s^{2}+1\right)} & =\frac{A}{s}+\frac{B s+C}{s^{2}+1} \quad \begin{array}{c}
\text { Mult. by } \\
s\left(s^{2}+1\right)
\end{array} \\
3 & =A\left(s^{2}+1\right)+(B s+C) s \\
& =A s^{2}+A+B s^{2}+C s
\end{aligned}
$$

$$
\begin{aligned}
& O s^{2}+O s+3=(A+B) s^{2}+\underline{C} s+\underline{A} \\
& A=3 \quad C=0, \quad A+B=0 \quad B=-A=-3 \\
& \text { so } \frac{3}{s\left(s^{2}+1\right)}=\frac{3}{s}+\frac{-3 s}{s^{2}+1} \\
& \frac{2}{s^{2}\left(s^{2}+1\right)}=\frac{A}{s}+\frac{B}{s^{2}}+\frac{C s+D}{s^{2}+1} \\
& \text { muet by } \\
& s^{2}\left(s^{2}+1\right) \\
& 2=A s\left(s^{2}+1\right)+B\left(s^{2}+1\right)+(C s+D) s^{2} \\
& =A s^{3}+A s+B s^{2}+B+C s^{3}+D s^{2} \\
& \underline{O} s^{3}+\underline{O} s^{2}+\underline{O} s+2=(A+C) s^{3}+(B+O) s^{2}+A s+\underline{B}
\end{aligned}
$$

$$
\begin{aligned}
& B=2, A=0, B+D=0 \quad D=-B=-2, A+C=0 \Rightarrow C=0 \\
& \frac{2}{s^{2}\left(s^{2}+1\right)}=\frac{2}{s^{2}}-\frac{2}{s^{2}+1} \\
& Y(s)=\frac{3}{s}-\frac{3 s}{s^{2}+1}+\left(\frac{2}{s^{2}}-\frac{2}{s^{2}+1}\right) e^{-4 s}+\frac{s}{s^{2}+1} \\
& Y(s)=\frac{3}{s}-\frac{2 s}{s^{2}+1}+\frac{2}{s^{2}} e^{-4 s}-\frac{2}{s^{2}+1} e^{-4 s} \\
& \mathcal{L}^{-1}\left\{\frac{2}{s^{2}}\right\}=2 t \quad \mathcal{L}^{-1}\left\{\frac{2}{s^{2}+1}\right\}=2 \sin t
\end{aligned}
$$

$$
\begin{aligned}
y(t) & =\mathscr{L}^{-1}\{Y(s)\} \\
& =3 \mathcal{L}^{-1}\left\{\frac{1}{s}\right\}-2 \mathscr{L}^{-1}\left\{\frac{s}{s^{2}+1}\right\}+\mathcal{L}^{-1}\left\{\frac{2}{s^{2}} e^{-4 s}\right\}-\mathcal{L}^{-1}\left\{\frac{2}{s^{2}+1} e^{-4 s}\right\} \\
y(t) & =3-2 \cos t+2(t-4) u(t-4)-2 \sin (t-4) u(t-4)
\end{aligned}
$$

The Second Shifting Theorem
Using the definition of the Laplace transform, show that

$$
\begin{gathered}
\mathscr{L}\{f(t-a) \mathscr{U}(t-a)\}=e^{-a s} \mathscr{L}\{f(t)\} \\
\text { Recall } u(t-a)=\left\{\begin{array}{l}
0,0 \leq t<a \\
1, \quad t \geqslant a
\end{array}\right. \\
\mathcal{L}\{f(t-a) u(t-a)\}=\int_{0}^{\infty} e^{-s t} f(t-a) u(t-a) d t \\
=\int_{0}^{a} e^{-s t} f(t-a) u(t-a) d t+\int_{a}^{\infty} e^{-s t} f(t-a) u(t-a) d t \\
0_{0}^{\prime \prime}
\end{gathered}
$$

$$
\begin{aligned}
& =\int_{a}^{\infty} e^{-s t} f(t-a) d t \\
& =\int_{0}^{\infty} e^{-s(u+a)} f(u) d u \\
& =\int_{0}^{\infty} e^{-a s} e^{-s u} f(u) d u \\
& =e^{-a s}\left(\int_{0}^{\infty} e^{-s u} f(u) d u\right)
\end{aligned}
$$

Let $u=t-a$

$$
\begin{gathered}
d u=d t \\
u=t-a \Rightarrow \quad t=u+a
\end{gathered}
$$

when $t=a$

$$
u=a-a=0
$$

as $t \rightarrow \infty$

$$
u=t-a \rightarrow \infty
$$

Note

$$
e^{-5(n+a)}=e^{-5 n} \cdot e^{-5 a}
$$

$=e^{-a s} \mathcal{L}\{f(t)\}$ as expected.

