April 8 MATH 1112 sec. 54 Spring 2019
Section 7.3: Verifying Identities
The following equation states an Identity. I will verify that it is true.

$$
\csc (x)-\sin (x)=\cos (x) \cot (x)
$$

well apply Identities to the left side to rewrite it until we end up with the right side.

$$
\begin{aligned}
\csc x-\sin x & =\frac{1}{\sin x}-\sin x \quad \csc x=\frac{1}{\sin x} \\
& =\frac{1}{\sin x}-\frac{\sin ^{2} x}{\sin x} \quad \text { Common } \quad \text { denominator }
\end{aligned}
$$

$$
\begin{array}{ll}
=\frac{1-\sin ^{2} x}{\sin x} & \begin{array}{l}
\text { using thet } \\
\text { common dunominater }
\end{array} \\
=\frac{\cos ^{2} x}{\sin x} & \begin{array}{l}
\text { Becanse } \\
\cos ^{2} x+\sin ^{2} x=1
\end{array} \\
=\cos x \frac{\cos x}{\sin x} & \text { some algebre } \\
=\cos x \cot x & \cot x=\frac{\cos x}{\sin x}
\end{array}
$$

Verifying Identities

Some things to note:

- Verifying an identity is NOT solving an equation.
- We do not "do the same thing" to both sides.
- We do not assume the statement is true. We SHOW it!
- Pick one side, and apply identities to it. The goal is to transform it to the other side.
- Usually try to work with the most complicated side. (It's usually easier to simplify a complicated expression than to complicate a simpler one!)
- Sometimes it helps to write everything in terms of sines and cosines-not always, but often.

Verify $\tan \left(\frac{\pi}{2}-\beta\right) \tan (\beta)=1$
well stan with th left side

$$
\begin{array}{rlrl}
\tan \left(\frac{\pi}{2}-\beta\right) \tan \beta & =\cot \beta \tan \beta & \begin{array}{c}
\text { Station } \\
\text { ID }
\end{array} \\
& =\frac{1}{\tan \beta} \tan \left(\frac{\pi}{2}-\beta\right)=\cot \beta
\end{array}
$$

Verify $\frac{\sin x}{1-\cos x}=\frac{1+\cos x}{\sin x}$
well start with the left side.
$\frac{\sin x}{1-\cos x}$

$$
\begin{aligned}
& =\left(\frac{\sin x}{1-\cos x}\right)\left(\frac{1+\cos x}{1+\cos x}\right) \\
& =\frac{\sin x(1+\cos x)}{1-\cos ^{2} x}
\end{aligned}
$$

we wort to use

$$
\sin ^{2} x+\cos ^{2} x=1
$$

we will ore

$$
1-\cos ^{2} x=(1-\cos x)(1+\cos x)
$$

$$
\begin{aligned}
& =\frac{\sin x(1+\cos x)}{\sin ^{2} x} \quad \text { Pythagorean ID } \\
& =\frac{\sin x(1+\cos x)}{\sin x \sin x} \\
& =\frac{1+\cos x}{\sin x} \quad \text { cancel common } \\
& \text { factor }
\end{aligned}
$$

