April 8 Math 2306 sec. 60 Spring 2019

Section 15: Shift Theorems

Theorem (translation in s)
Suppose $\mathscr{L}\{f(t)\}=F(s)$. Then for any real number a

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}=F(s-a)
$$

For example,

$$
\begin{gathered}
\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}} \Longrightarrow \mathscr{L}\left\{e^{a t} t^{n}\right\}=\frac{n!}{(s-a)^{n+1}} . \\
\mathscr{L}\{\cos (k t)\}=\frac{s}{s^{2}+k^{2}} \Longrightarrow \mathscr{L}\left\{e^{a t} \cos (k t)\right\}=\frac{s-a}{(s-a)^{2}+k^{2}} .
\end{gathered}
$$

Inverse Laplace Transforms (completing the square)
(a) $\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+2 s+2}\right\}$ $s^{2}+2 s+2$ is irreducible (doernit factor)
weill complete the square

$$
\begin{aligned}
s^{2}+2 s+2 & =s^{2}+2 s+1-1+2 \\
& =(s+1)^{2}+1 \\
\frac{s}{s^{2}+2 s+2} & =\frac{s}{(s+1)^{2}+1} \quad \text { we nod } s
\end{aligned}
$$

well use $s=s+1-1$

So

$$
\frac{s}{s^{2}+2 s+2}=\frac{s+1-1}{(s+1)^{2}+1}=\frac{s+1}{(s+1)^{2}+1}-\frac{1}{(s+1)^{2}+1}
$$

Note $\mathcal{L}\{$ cost $\}=\frac{s}{s^{2}+1}$ and $\mathcal{L}\{\sin t\}=\frac{1}{s^{2}+1}$
From $s+1=s-a$, we have $a=-1$

$$
\begin{aligned}
\mathcal{L}^{-1}\left\{\frac{s}{s^{2}+2 s+2}\right\} & =\mathcal{L}^{-1}\left\{\frac{s+1}{(s+1)^{2}+1}\right\}-\mathcal{L}^{-1}\left\{\frac{1}{(s+1)^{2}+1}\right\} \\
& =e^{-t} \cos t-e^{-t} \sin t
\end{aligned}
$$

Inverse Laplace Transforms (repeat linear factors)
(b) $\mathscr{L}^{-1}\left\{\frac{1+3 s-s^{2}}{s(s-1)^{2}}\right\}$ well do a partial fraction decomp

$$
\frac{-s^{2}+3 s+1}{s(s-1)^{2}}=\frac{A}{s}+\frac{B}{s-1}+\frac{C}{(s-1)^{2}}
$$

Clear fractions

$$
\begin{aligned}
-s^{2}+3 s+1 & =A(s-1)^{2}+B s(s-1)+C s \\
& =A\left(s^{2}-2 s+1\right)+B\left(s^{2}-s\right)+C s \\
-s^{2}+3 s+1 & =(A+B) s^{2}+(-2 A-B+C) s+A
\end{aligned}
$$

$$
\begin{gathered}
\left.\begin{array}{c}
A+B=-1 \\
-2 A-B+C=3 \\
A
\end{array}\right\}=1
\end{gathered} \begin{aligned}
& \text { and } \\
& C=3+2 A+B=3+2-2=3
\end{aligned}
$$

So

$$
\frac{-s^{2}+3 s+1}{s(s-1)^{2}}=\frac{1}{s}-\frac{2}{s-1}+\frac{3}{(s-1)^{2}}
$$

Note that $\mathcal{L}\{t\}=\frac{1}{s^{2}}$ and if $s-a=s-1$ then $a=1$

Then

$$
\begin{aligned}
\mathcal{L}^{-1}\left\{\frac{-s^{2}+3 s+1}{s(s-1)^{2}}\right\} & =\mathcal{L}^{-1}\left\{\frac{1}{s}\right\}-2 \mathcal{L}^{-1}\left\{\frac{1}{s-1}\right\}+3 \mathcal{L}^{-1}\left\{\frac{1}{(s-1)^{2}}\right\} \\
& =1-2 e^{t}+3 e^{t} t
\end{aligned}
$$

The Unit Step Function

Let $a \geq 0$. The unit step function $\mathscr{U}(t-a)$ is defined by

$$
\mathscr{U}(t-a)= \begin{cases}0, & 0 \leq t<a \\ 1, & t \geq a\end{cases}
$$

Figure: We can use the unit step function to provide convenient expressions for piecewise defined functions.

Piecewise Defined Functions
Verify that

$$
f(t)=\left\{\begin{array}{ll}
g(t), & 0 \leq t<a \\
h(t), & t \geq a
\end{array}=g(t)-g(t) \mathscr{U}(t-a)+h(t) \mathscr{U}(t-a)\right.
$$

well consider how f is given for $0 \leq t<a$ and for $t \geqslant a$. working with the for right.

If $0 \leq t<a$, then $u(t-a)=0$. On this interval

$$
\begin{aligned}
g(t)-g(t) u(t-a)+h(t) u(t-a) & =g(t)-g(t) \cdot 0+h(t) \cdot 0 \\
& =g(t)
\end{aligned}
$$

If $t \geqslant a$, then $u(t-a)=1$. On this interval

$$
\begin{aligned}
g(t)-g(t) u(t-a)+h(t) u(t-a) & =g(t)-g(t) \cdot 1+h(t) \cdot 1 \\
& =h(t)
\end{aligned}
$$

So

$$
g(t)-g(t) u(t-a)+h(t) u(t-a)=f(t)
$$

on all of $[0, \infty)$.

Piecewise Defined Functions in Terms of \mathscr{U}
Write f on one line in terms of \mathscr{U} as needed

$$
f(t)= \begin{cases}e^{t}, & 0 \leq t<2 \\ t^{2}, & 2 \leq t<5 \\ 2 t & t \geq 5\end{cases}
$$

we con turn the pieces "on" and "off" using $U(t-a)$

$$
\begin{gathered}
f(t)=e^{t}-e^{t} u(t-2)+t^{2} u(t-2)-t^{2} u(t-5)+2 t u(t-5) \\
\text { on } \quad \uparrow_{\text {off }} \quad \uparrow_{\text {on }} \quad \uparrow \text { off on on }
\end{gathered}
$$

Verification left as an exercise.

Translation in t

Given a function $f(t)$ for $t \geq 0$, and a number $a>0$

$$
f(t-a) \mathscr{U}(t-a)= \begin{cases}0, & 0 \leq t<a \\ f(t-a), & t \geq a\end{cases}
$$

Figure: The function $f(t-a) \mathscr{U}(t-a)$ has the graph of f shifted a units to the right with value of zero for t to the left of a.

Theorem (translation in t)

If $F(s)=\mathscr{L}\{f(t)\}$ and $a>0$, then

$$
\mathscr{L}\{f(t-a) \mathscr{U}(t-a)\}=e^{-a s} F(s) .
$$

In particular,

$$
\mathscr{L}\{\mathscr{U}(t-a)\}=\frac{e^{-a s}}{s} .
$$

As another example,

$$
\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}} \quad \Longrightarrow \quad \mathscr{L}\left\{(t-a)^{n} \mathscr{U}(t-a)\right\}=\frac{n!e^{-a s}}{s^{n+1}} .
$$

Find $\mathscr{L}\{\mathscr{U}(t-a)\}$

$$
u(t-a)= \begin{cases}0, & 0 \leq t<a \\ 1, & t \geqslant a\end{cases}
$$

By definition

$$
\begin{aligned}
y\{u(t-a)\} & =\int_{0}^{\infty} e^{-s t} u(t-a) d t \\
& =\int_{0}^{a} e^{-s t} \cdot 0 d t+\int_{a}^{\infty} e^{-s t} \cdot 1 d t \\
& =\left.\frac{-1}{s} e^{-s t}\right|_{a} ^{\infty} \quad \text { for } s>0 \\
& =\frac{-1}{s}\left(0-e^{-s(a)}\right)=\frac{e^{-a s}}{s}
\end{aligned}
$$

Example
Find the Laplace transform $\mathscr{L}\{f(t)\}$ where

$$
f(t)= \begin{cases}1, & 0 \leq t<1 \\ t, & t \geq 1\end{cases}
$$

(a) First write f in terms of unit step functions.

$$
\begin{aligned}
f(t) & =1-1 u(t-1)+t u(t-1) \\
& =1+(-1+t) u(t-1) \\
& =1+(t-1) u(t-1)
\end{aligned}
$$

Example Continued...
(b) Now use the fact that $f(t)=1+(t-1) \mathscr{U}(t-1)$ to find $\mathscr{L}\{f\}$.

$$
\begin{aligned}
\mathcal{L}\{f(t)\} & =\mathcal{L}\{1+(t-1) u(t-1)\} \\
& =\mathcal{L}\{1\}+\mathcal{L}\{(t-1) u(t-1)\} \\
& =\frac{1}{\delta}+\frac{e^{-s}}{s^{2}} \\
* \mathcal{L}\{t\} & =\frac{1}{s^{2}} \text { so } \mathcal{L}\{(t-1) u(t-1)\}=e^{-s}\left(\frac{1}{s^{2}}\right)
\end{aligned}
$$

A Couple of Useful Results

Another formulation of this translation theorem is
(1) $\mathscr{L}\{g(t) \mathscr{U}(t-a)\}=e^{-a s} \mathscr{L}\{g(t+a)\}$.

$$
\text { Because } g(t)=g((t-a)+a)
$$

Example: Find $\mathscr{L}\left\{\cos t \mathscr{U}\left(t-\frac{\pi}{2}\right)\right\}$

