August 15 Math 2306 sec. 53 Fall 2018

Section 1: Concepts and Terminology

We have defined differential equations, and started to define certain characteristics and categories:

- Ordinary differential equations (ODEs) have one independent variable; partial differential equations (PDEs) have two or more independent variables.
- The order of an equation is equal to largest order of derivative appearing in the equation.
- An $n^{\text {th }}$ order equation in normal form looks like $\frac{d^{n} y}{d x^{n}}=f\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right)$ for some function f.

Classifications

Linearity: An $n^{\text {th }}$ order differential equation is said to be linear if it can be written in the form

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) .
$$

The key characteristics here are:

- y and any of its derivatives can only appear as themselves (to the first power),
- coefficients of y and its derivatives may depend on the independent variable, but not on y or its derivatives,
- if you replace y on the left side with $C y$ for any constant C, it factors giving you C times the original left side,
- if you replace y on the left with $y_{1}+y_{2}$ (a sum of y 's), you can distribute to get a sum of the left side with y_{1} and the same left side with y_{2}.

Classifications

Linearity: An $n^{\text {th }}$ order differential equation is said to be linear if it can be written in the form

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) .
$$

If we define the operation L by

$$
L y=a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y
$$

then L is a linear operator in the sense that

$$
\begin{gathered}
L(C y)=C L y \quad \text { for any constant } C, \quad \text { and } \\
L\left(y_{1}+y_{2}\right)=L y_{1}+L y_{2},
\end{gathered}
$$

for any pair of sufficiently differentiable functions y_{1} and y_{2}.

Examples (Linear -vs- Nonlinear)

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

The following are linear.

$$
\begin{gathered}
y^{\prime \prime}+4 y=0 \\
a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=g(x) \\
a_{2}(x)=1 \\
a_{1}(x)=0 \\
a_{0}(x)=4 \\
g(x)=0
\end{gathered}
$$

$$
t^{2} \frac{d^{2} x}{d t^{2}}+2 t \frac{d x}{d t}-x=e^{t}
$$

$$
a_{2}(t)=t^{2}
$$

$$
a_{1}(t)=2 t
$$

$$
g(t)=e^{t}
$$

$$
a_{0}(t)=-1
$$

Examples (Linear -vs- Nonlinear)

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

The following are nonlinear.

$$
\frac{d^{3} y}{d x^{3}}+\left(\frac{d y}{d x}\right)^{4}=x^{3} \quad u^{\prime \prime}+u^{\prime}=\cos u
$$

$$
y^{\prime \prime \prime}+\left(y^{\prime}\right)^{3} y^{\prime}=x^{3}
$$

$\left(\frac{d y}{d x}\right)^{4}$ is a nonlinear term

Cosh is a nonlinear term because u is dependent.

Example: Classification
Identify the independent and dependent variables. Determine the order of the equation. State whether it is linear or nonlinear.
(a) $\quad y^{\prime \prime}+2 t y^{\prime}=\cos t+y-y^{\prime \prime \prime}$

$$
y^{\prime \prime \prime}+y^{\prime \prime}+2 t y^{\prime}-y=\cos t
$$

y-dependent
t-independent
order is 3
Linear
(b) $\ddot{\theta}+\frac{g}{\ell} \sin \theta=0 \quad g$ and ℓ are constant Indepandent variober is time (t)

O- dependent variable
$2^{n y}$ orden
Non linea $\sin \theta$ is a rondinear term θ is dioundent

Solution of $F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0\left(^{*}\right)$

Definition: A function ϕ defined on an interval ${ }^{1}$ I and possessing at least n continuous derivatives on / is a solution of (*) on / if upon substitution (i.e. setting $y=\phi(x)$) the equation reduces to an identity.

Definition: An implicit solution of (${ }^{*}$) is a relation $G(x, y)=0$ provided there exists at least one function $y=\phi$ that satisfies both the differential equation (*) and this relation.

[^0]Examples:
Verify that the given function is a solution of the ODE on the indicated interval.

$$
\phi(t)=3 e^{2 t}, \quad I=(-\infty, \infty), \quad \frac{d^{2} y}{d t^{2}}-\frac{d y}{d t}-2 y=0
$$

ϕ has derivatives of all ordas on I.
In paticula, it has at least two derivatives on I.
To finish the verification, we set $y=\phi(t)$

$$
\begin{aligned}
& y^{\prime}=\phi^{\prime}(t)=6 e^{2 t}, y^{\prime \prime}=\phi^{\prime \prime}(t)=12 e^{2 t} \\
& y^{\prime \prime}-y^{\prime}-2 y=0
\end{aligned}
$$

$$
\begin{aligned}
& 12 e^{2 t}-6 e^{2 t}-2\left(3 e^{2 t}\right)= \\
& 12 e^{2 t}-6 e^{2 t}-6 e^{2 t}= \\
& (12-6-6) e^{2 t}= \\
& 0=0 \quad \text { an identity! }
\end{aligned}
$$

So ϕ is a solution on I.

Verify that the relation(left) defines and implicit solution of the differential equation (right).

$$
y^{2}-2 x^{2} y=1, \quad \frac{d y}{d x}=\frac{2 x y}{y-x^{2}}
$$

we con show that if y satisfies the relation, then it satisfies the ODE using implicit differentiation.

$$
y^{2}-2 x^{2} y=1 \Rightarrow 2 y \frac{d y}{d x}-4 x y-2 x^{2} \frac{d y}{d x}=0
$$

Using some algebra

It may not be possible to clearly identify the domain of definition of an implicit solution.

August 14, $2018 \quad 11 / 45$

$$
\begin{aligned}
& y \frac{d y}{d x}-2 x y-x^{2} \frac{d y}{d x}=0 \\
& \left(y-x^{2}\right) \frac{d y}{d x}=2 x y \quad \text { for } y-x^{2} \neq 0 \\
& \frac{d y}{d x}=\frac{2 x y}{y-x^{2}} \quad \text { this is the } \\
& \text { ODE }
\end{aligned}
$$

Hence the relation defines on implicit so elution.

[^0]: ${ }^{1}$ The interval is called the domain of the solution or the interval of definition.

