August 15 Math 2306 sec. 56 Fall 2017

Section 1: Concepts and Terminology

Suppose $y=\phi(x)$ is a differentiable function. We know that $d y / d x=\phi^{\prime}(x)$ is another (related) function.

For example, if $y=\cos (2 x)$, then y is differentiable on $(-\infty, \infty)$. In fact,

$$
\frac{d y}{d x}=-2 \sin (2 x) .
$$

Even $d y / d x$ is differentiable with $d^{2} y / d x^{2}=-4 \cos (2 x)$.

Suppose $y=\cos (2 x)$

Note that $\quad \frac{d^{2} y}{d x^{2}}+4 y=0$.

$$
\frac{d^{2} y}{d x^{2}}=-4 \cos (2 x) \text { and } 4 y=4 \cos (2 x)
$$

So yes, $\frac{d^{2}}{d x^{2}}+4 y=-4 \cos (2 x)+4 \cos (2 x)$

$$
=0
$$

A differential equation

The equation

$$
\frac{d^{2} y}{d x^{2}}+4 y=0
$$

is an example of a differential equation.

Questions: If we only started with the equation, how could we determine that $\cos (2 x)$ satisfies it? Also, is $\cos (2 x)$ the only possible function that y could be?
well be able to answer both at the
end of this Lem!

Definition

A Differential Equation is an equation containing the derivative(s) of one or more dependent variables, with respect to one or more indendent variables.

Solving a differential equation refers to determining the dependent variable(s)-as function(s).

Independent Variable: will appear as one that derivatives are taken with respect to.

Dependent Variable: will appear as one that derivatives are taken of.
I these ore functions

Independent and Dependent Variables

Often, the derivatives indicate which variable is which:

$$
\frac{d y}{d x} \quad \frac{d u \notin d e \rho .}{d t} \quad \frac{d x}{d r_{\text {Fin }}} \quad \operatorname{dep}_{\text {ind }}
$$

\uparrow
derivative of y with respect to x y-dependent
x - independent

Classifications

Type: An ordinary differential equation (ODE) has exactly one independent variable ${ }^{1}$. For example

$$
\frac{d y}{d x}-y^{2}=3 x, \quad \text { or } \quad \frac{d y}{d t}+2 \frac{d x}{d t}=t, \quad \text { or } \quad y^{\prime \prime}+4 y=0
$$

A partial differential equation (PDE) has two or more independent variables. For example

$$
\frac{\partial y}{\partial t}=\frac{\partial^{2} y}{\partial x^{2}}, \quad \text { or } \quad \frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0
$$

${ }^{1}$ These are the subject of this course.

Classifications

Order: The order of a differential equation is the same as the highest order derivative appearing anywhere in the equation.

$$
\begin{array}{ll}
\frac{d y}{d x}-y^{2}=3 x & 1^{\text {st }} \text { order } \\
y^{\prime \prime \prime}+\left(y^{\prime}\right)^{4}=x^{3} & 3^{\text {rd }} \text { order } \\
\frac{\partial y}{\partial t}=\frac{\partial^{2} y}{\partial x^{2}} & 2^{\text {nd }} \text { order }
\end{array}
$$

Notations and Symbols

We'll use standard derivative notations:
Leibniz: $\frac{d y}{d x}, \quad \frac{d^{2} y}{d x^{2}}, \ldots \frac{d^{n} y}{d x^{n}}, \quad$ or
Prime \& superscripts: $\quad y^{\prime}, \quad y^{\prime \prime}, \quad \ldots \quad y^{(n)}$.

Newton's dot notation may be used if the independent variable is time. For example if s is a position function, then
velocity is $\frac{d s}{d t}=\dot{s}, \quad$ and acceleration is $\frac{d^{2} s}{d t^{2}}=\ddot{s}$

Notations and Symbols

An $n^{\text {th }}$ order ODE, with independent variable x and dependent variable y can always be expressed as an equation

$$
F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0
$$

where F is some real valued function of $n+2$ variables.

Normal Form: If it is possible to isolate the highest derivative term, then we can write a normal form of the equation

$$
\frac{d^{n} y}{d x^{n}}=f\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right) .
$$

$$
\frac{d^{2} y}{d x^{2}}+4 y=0
$$

This has the form $F\left(x, y, y^{\prime}, y^{\prime \prime}\right)=0$
when $F\left(x, y, y^{\prime}, y^{\prime \prime}\right)=y^{\prime \prime}+4 y$

In normal form, this is

$$
\frac{d^{2} y}{d x^{2}}=-4 y
$$

here $f\left(x, y, y^{\prime}\right)=-4 y$

Notations and Symbols

If $n=1$ or $n=2$, an equation in normal form would look like

$$
\frac{d y}{d x}=f(x, y) \quad \text { or } \quad \frac{d^{2} y}{d x^{2}}=f\left(x, y, y^{\prime}\right)
$$

Differential Form: A first order equation may appear in the form

$$
M(x, y) d x+N(x, y) d y=0
$$

differential form

$$
M(x, y) d x+N(x, y) d y=0
$$

Differential forms may be written in normal form in a couple of ways.

$$
\text { If } N(x, y) \neq 0 \text { then } \quad \begin{aligned}
& N(x, y) d y=-M(x, y) d x \\
& \Rightarrow \frac{d y}{d x}=\frac{-M(x, y)}{N(x, y)}
\end{aligned}
$$

If $M(x, y) \neq 0$ we can also write this as $\quad \frac{d x}{d y}=\frac{-N(x, y)}{M(x, y)}$

Classifications

Linearity: An $n^{\text {th }}$ order differential equation is said to be linear if it can be written in the form

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) .
$$

Note that each of the coefficients a_{0}, \ldots, a_{n} and the right hand side g may depend on the independent variable but not on the dependent variable or any of its derivatives.

$$
\begin{aligned}
& y, y^{\prime}, \ldots, y^{(n)} \text { con only oppean to the } 1^{\text {st }} \\
& \text { power oud not inside ans function or } \\
& \text { multiplied to setter. }
\end{aligned}
$$

Examples (Linear -vs- Nonlinear)

Br $y^{\prime \prime}+4 y=0$

$$
a_{2}(x)=1 \quad g(x)=0
$$

$$
a_{1}(x)=0
$$

$$
\begin{aligned}
& t^{2} \frac{d^{2} x}{d t^{2}}+2 t \frac{d x}{d t}-x=e^{t} \\
& a_{2}(t)=t^{2} \quad g(t)=e^{t} \\
& a_{1}(t)=2 t \\
& a_{0}(t)=-1
\end{aligned}
$$

$$
u^{\prime \prime}+u^{\prime}=\cos u
$$ inside the cosine.

Identify the independent and dependent variables. Determine the order of the equation. State whether it is linear or nonlinear.
(a)

$$
\begin{array}{ll}
y^{\prime \prime}+2 t y^{\prime}=\cos t+y-y^{\prime \prime \prime} & \text { It's } \\
\left(\begin{array}{l}
\text { defer } \\
\text { rearrange }
\end{array}\right. & \text { indef } \\
y^{\prime \prime \prime}+y^{\prime \prime}+2 t y^{\prime}-y=\cos t
\end{array}
$$

This is linear.
(b) $\ddot{\theta}+\frac{g}{\ell} \sin \theta=0 \quad g$ and ℓ are constant
$2^{\text {nd }}$ order
Independent variable is t for time dependent - θ

Nonlinear due to the $\sin \theta$ term as θ is dependent

Solution of $F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0\left(^{*}\right)$

Definition: A function ϕ defined on an interval ${ }^{2} /$ and possessing at least n continuous derivatives on / is a solution of (*) on I if upon substitution (i.e. setting $y=\phi(x)$) the equation reduces to an identity.

Definition: An implicit solution of (${ }^{*}$) is a relation $G(x, y)=0$ provided there exists at least one function $y=\phi$ that satisfies both the differential equation (*) and this relation.
${ }^{2}$ The interval is called the domain of the solution or the interval of definition.

Examples:
Verify that the given function is an solution of the ODE on the indicated interval.

$$
\phi(t)=3 e^{2 t}, \quad I=(-\infty, \infty), \quad \frac{d^{2} y}{d t^{2}}-\frac{d y}{d t}-2 y=0
$$

ϕ has derivatives of all orders,
Set $y=3 e^{2 t}$, then $\frac{d y}{d t}=6 e^{2 t}$ and $\frac{d^{2} y}{d t^{2}}=12 e^{2 t}$

$$
\begin{aligned}
& \frac{d^{2} y}{d t^{2}}-\frac{d y}{d t}-2 y=0 \\
& 12 e^{2 t}-6 e^{2 t}-2\left(3 e^{2 t}\right)= \\
& \left.e^{2 t}(12-6-6)=0 \quad y \quad\right)
\end{aligned}
$$

Verify that the relation(left) defines and implicit solution of the differential equation (right).

$$
y^{2}-2 x^{2} y=1, \quad \frac{d y}{d x}=\frac{2 x y}{y-x^{2}}
$$

Well use implicit diff. to show that if y solves the relation, it also. solves the ODE.

$$
\begin{aligned}
& 2 y \frac{d y}{d x}-4 x y-2 x^{2} \frac{d y}{d x}=0 \\
& \left(2 y-2 x^{2}\right) \frac{d y}{d x}=4 x y \\
& 2\left(y-x^{2}\right) \frac{d y}{d x}=4 x y \Rightarrow \frac{d y}{d x}=\frac{2 x y}{y-x^{2}}
\end{aligned}
$$

It may not be possible to clearly identify the domain of definition of an implicit solution.

August 14, 2017
19 / 49

Function vs Solution

The interval of defintion has to be an interval.

Consider $y^{\prime}=-y^{2}$. Clearly $y=\frac{1}{x}$ solves the DE. The interval of defintion can be $(-\infty, 0)$, or $(0, \infty)$-or any interval that doesn't contain the origin. But it can't be $(-\infty, 0) \cup(0, \infty)$ because this isn't an interva!!

Often, we'll take / to be the largest, or one of the largest, possible intervasl. It may depend on other information.

Figure: Left: Plot of $f(x)=\frac{1}{x}$ as a function. Right: Plot of $f(x)=\frac{1}{x}$ as a possible solution of an ODE.

