August 15 Math 2306 sec. 57 Fall 2017

Section 1: Concepts and Terminology

Suppose $y = \phi(x)$ is a differentiable function. We know that $dy/dx = \phi'(x)$ is another (related) function.

For example, if $y = \cos(2x)$, then y is differentiable on $(-\infty, \infty)$. In fact,

$$\frac{dy}{dx} = -2\sin(2x).$$

August 10, 2017 1/49

Even dy/dx is differentiable with $d^2y/dx^2 = -4\cos(2x)$.

Suppose $y = \cos(2x)$

Note that
$$\frac{d^2y}{dx^2} + 4y = 0.$$

We know that
$$\frac{d^2y}{dx^2} = -4 \cos(2x)$$

and
$$4y = 4 \cos(2x)$$

So
$$\frac{d^2y}{dx^2} + 4y = -4 \cos(2x) + 4 \cos(2x) = 0$$

as expected

August 10, 2017 2 / 49

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ の Q @

A differential equation

The equation

$$\frac{d^2y}{dx^2} + 4y = 0.$$

is an example of a differential equation.

Questions: If we only started with the equation, how could we determine that cos(2x) satisfies it? Also, is cos(2x) the only possible function that *y* could be?

August 10, 2017 3 / 49

A **Differential Equation** is an equation containing the derivative(s) of one or more dependent variables, with respect to one or more indendent variables.

Solving a differential equation refers to determining the dependent variable(s)—as function(s).

Independent Variable: will appear as one that derivatives are taken with respect to.

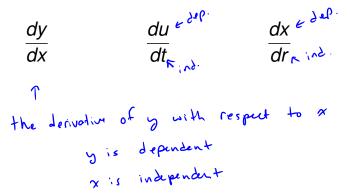
Dependent Variable: will appear as one that derivatives are taken of.

August 10, 2017 4 / 49

I thes are on contrars

Independent and Dependent Variables

Often, the derivatives indicate which variable is which:



Classifications

Type: An **ordinary differential equation (ODE)** has exactly one independent variable¹. For example

$$\frac{dy}{dx} - y^2 = 3x$$
, or $\frac{dy}{dt} + 2\frac{dx}{dt} = t$, or $y'' + 4y = 0$

A **partial differential equation (PDE)** has two or more independent variables. For example

$$\frac{\partial y}{\partial t} = \frac{\partial^2 y}{\partial x^2}, \quad \text{or} \quad \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$$

¹These are the subject of this course.

• • • • • • • • • •

Classifications

Order: The order of a differential equation is the same as the highest order derivative appearing anywhere in the equation.

 $\frac{dy}{dx} - y^2 = 3x \qquad |^{sL} \text{ orden}$ $y''' + (y')^4 = x^3 \qquad 3^{rd} \text{ orden}$ $\frac{\partial y}{\partial t} = \frac{\partial^2 y}{\partial x^2} \qquad 2^{nd} \text{ orden}$

イロト 不得 トイヨト イヨト ヨー ろくの

Notations and Symbols

We'll use standard derivative notations:

Leibniz:
$$\frac{dy}{dx}$$
, $\frac{d^2y}{dx^2}$, ... $\frac{d^ny}{dx^n}$, or
Prime & superscripts: y' , y'' , ... $y^{(n)}$.

Newton's **dot notation** may be used if the independent variable is time. For example if s is a position function, then

velocity is
$$\frac{ds}{dt} = \dot{s}$$
, and acceleration is $\frac{d^2s}{dt^2} = \ddot{s}$

August 10, 2017 8 / 49

Notations and Symbols

An n^{th} order ODE, with independent variable x and dependent variable y can always be expressed as an equation

$$F(x, y, y', \ldots, y^{(n)}) = 0$$

where *F* is some real valued function of n + 2 variables.

Normal Form: If it is possible to isolate the highest derivative term, then we can write a **normal form** of the equation

$$\frac{d^n y}{dx^n} = f(x, y, y', \dots, y^{(n-1)}).$$

August 10, 2017

9/49

 $\frac{d^2y}{dx^2} + 4y = 0$ This is of the form F(x,y,y',y'') = 0where F(x,y,y',y'') = y'' + 4y

In normal form, this is

$$\frac{d^2y}{dx^2} = -4y \qquad \text{so} \cdot f(x,y,y') = -4y.$$

August 10, 2017 10 / 49

Notations and Symbols

If n = 1 or n = 2, an equation in normal form would look like

$$\frac{dy}{dx} = f(x, y)$$
 or $\frac{d^2y}{dx^2} = f(x, y, y').$

Differential Form: A first order equation may appear in the form

$$M(x,y) dx + N(x,y) dy = 0$$

$$\int_{1}^{1} \left\{ f e^{-\frac{1}{2} \int_{0}^{1} f e^{-\frac{1}{$$

August 10, 2017

11/49

$$M(x,y)\,dx+N(x,y)\,dy=0$$

Differential forms may be written in normal form in a couple of ways.

$$|f N(x,y) \neq 0, \quad fhen \quad N(x,y) \, dy = -M(x,y) \, dx$$
$$\frac{dy}{dx} = -\frac{M(x,y)}{N(x,y)}$$

-

・ロト ・ 日 ト ・ 日 ト ・ 日

э

12/49

August 10, 2017

Similarly if
$$M(x,b) \neq 0$$

$$\frac{dx}{dy} = -\frac{N(x,y)}{M(x,y)}$$

Classifications

Linearity: An nth order differential equation is said to be linear if it can be written in the form

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x).$$

Note that each of the coefficients a_0, \ldots, a_n and the right hand side g may depend on the independent variable but not on the dependent variable or any of its derivatives.

Key: y and its derivatives on only appear to the 1st power. Not inside other functions or melt: plied by each other.

> August 10, 2017

13/49

Examples (Linear -vs- Nonlinear)

$$\int_{x^{3}}^{y^{3}} \int_{x^{3}}^{y^{3}} \left(\frac{dy}{dx}\right)^{4} = x^{3}$$

$$t^{2}\frac{d^{2}x}{dt^{2}} + 2t\frac{dx}{dt} - x = e^{t}$$

$$a_{2}(t) = t^{2} \qquad g(t) = e^{t}$$

$$a_{1}(t) = 2t$$

$$a_{0}(t) = -1$$

August 10, 2017

14/49

(日) (圖) (目) (目)

Identify the independent and dependent variables. Determine the order of the equation. State whether it is linear or nonlinear.

×

(a)
$$y''+2ty' = \cos t+y-y'''$$

dependent van. 5
Independent van t

August 10, 2017 15 / 49

イロト イポト イヨト イヨト

(b) $\ddot{\theta} + \frac{g}{\ell} \sin \theta = 0$ g and ℓ are constant 2nd orden dependent van O independent van 6 for time This is nonlinear due to the Sind term.

August 10, 2017 16 / 49

Solution of $F(x, y, y', ..., y^{(n)}) = 0$ (*)

Definition: A function ϕ defined on an interval² / and possessing at least *n* continuous derivatives on *I* is a **solution** of (*) on *I* if upon substitution (i.e. setting $y = \phi(x)$) the equation reduces to an identity.

Definition: An **implicit solution** of (*) is a relation G(x, y) = 0 provided there exists at least one function $y = \phi$ that satisfies both the differential equation (*) and this relation.

²The interval is called the *domain of the solution* or the *interval of definition*.

Examples:

Verify that the given function is an solution of the ODE on the indicated interval.

$$\phi(t) = 3e^{2t}, \quad l = (-\infty, \infty), \quad \frac{d^2y}{dt^2} - \frac{dy}{dt} - 2y = 0$$

$$\phi \text{ hes derivatives of all orders on I.}$$

Set $y = 3e^{2t}$, then $y' = 6e^{2t}$ and $y'' = 12e^{2t}$
 $\frac{d^3y}{dt^2} - \frac{dy}{dt} - 2y \stackrel{?}{=} 0$
 $(12e^{t} - 6e^{t} - 2(3e^{t})) =$
 $(12 - (6 - (6))e^{t} = yeo - silution$
 $0 = 0$ (Because)

Verify that the relation(left) defines and implicit solution of the differential equation (right).

$$y^{2} - 2x^{2}y = 1, \qquad \frac{dy}{dx} = \frac{2xy}{y - x^{2}}$$

Well use implicit differentiation to show
that if y solves the relation, it solves the ODE.

$$2y \frac{dy}{dx} - 4xy - 2x^{2} \frac{dy}{dx} = 0$$

$$2(y - x^{2}) \frac{dy}{dx} = 4xy \implies \frac{dy}{dx} = \frac{2xy}{y - x^{2}}$$

This is
the risht

It may not be possible to clearly identify the domain of definition of an implicit solution.

Function vs Solution

The interval of definition has to be an interval.

Consider $y' = -y^2$. Clearly $y = \frac{1}{y}$ solves the DE. The interval of definition can be $(-\infty, 0)$, or $(0, \infty)$ —or any interval that doesn't contain the origin. But it can't be $(-\infty, 0) \cup (0, \infty)$ because this isn't an interval!

> August 10, 2017

20/49

Often, we'll take I to be the largest, or one of the largest, possible intervasl. It may depend on other information.

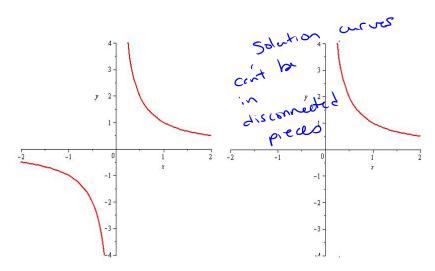


Figure: Left: Plot of $f(x) = \frac{1}{x}$ as a **function**. Right: Plot of $f(x) = \frac{1}{x}$ as a possible **solution** of an ODE.

August 10, 2017

21/49