August 15 Math 3260 sec. 57 Fall 2017

Section 1.1: Systems of Linear Equations

We begin with a linear (algebraic) equation in n variables $x_{1}, x_{2}, \ldots, x_{n}$ for some positive integer n.

A linear equation can be written in the form

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b .
$$

The numbers a_{1}, \ldots, a_{n} are called the coefficients. These numbers and the right side b are real (or complex) constants that are known.

Examples of Equations that are or are not Linear
33^{2+}
$8{ }^{, n+5}$

$$
\begin{array}{lrr}
2 x_{1}=4 x_{2}-3 x_{3}+5 & \text { and } & 12-\sqrt{3}(x+y)=0 \\
2 x_{1}-4 x_{2}+3 x_{3}=5 & \sqrt{3} x+\sqrt{3} y=12
\end{array}
$$

A Linear System is a collection of linear equations in

 the same variables$$
\begin{gathered}
2 x_{1}+x_{2}-3 x_{3}+x_{4}=-3 \\
-x_{1}+3 x_{2}+4 x_{3}-2 x_{4}=8 \\
x+2 y+3 z=4 \\
3 x+12 z=0 \\
2 x+2 y-5 z=-6
\end{gathered}
$$

Some terms

- A solution is a list of numbers $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ that reduce each equation in the system to a true statement upon substitution.
- A solutions set is the set of all possible solutions of a linear system.
- Two systems are called equivalent if they have the same solution set.

An Example

$$
\begin{gathered}
2 x-y=-1 \\
-4 x+2 y=2
\end{gathered}
$$

(a) Show that $(1,3)$ is a solution.

Here $x=1$ and $y=3$ in the pair $(1,3)$.

$$
\begin{array}{ll}
\text { Here } x=1 & \text { and } y=3 \\
2(1)-3=2-3=-1 & -1=-1 \\
\text { the st equation } \\
\text { is satisfied } \\
-4(1)+2(3)=-4+6=2 & 2=2
\end{array} \begin{array}{ll}
\text { the } 2^{\text {ned ear }} \\
\text { is satisfied }
\end{array}
$$ is satisfied

Both equations hold, s. $(1,3)$ is a solution.

An Example Continued

$$
\begin{aligned}
2 x-y & =-1 \\
-4 x+2 y & =2
\end{aligned}
$$

(b) Note that $\{(x, y) \mid y=2 x+1\}$ is the solution set.

$$
\text { From } 2 x-y=-1 \Rightarrow 2 x=-1+y \Rightarrow 2 x+1=y
$$

From $-4 x+2 y=2 \Rightarrow 2 y=2+4 x$

$$
2 y=2(1+2 x) \Rightarrow y=1+2 x
$$

The Geometry of 2 Equations with 2 Variables

Figure: The system $x-y=-1$ and $2 x+y=3$ with solution set $\{(2 / 3,5 / 2)\}$. These equations represent lines that intersect at one point.

The Geometry of 2 Equations with 2 Variables

Figure: The system $x-y=-1$ and $2 x-2 y=-2$ with solution set $\{(x, y) \mid y=x+1\}$. Both equations represent the same line which share all common points as solutions.

The Geometry of 2 Equations with 2 Variables

Figure: The system $x-y=-1$ and $2 x-2 y=2$ with solution set \emptyset. These equations represent parallel lines having no common points.

Theorem

A linear system of equations has exactly one of the following:
i No solution, or
ii Exactly one solution, or
iii Infinitely many solutions.

Terms: A system is
consistent if it has at least one solution (cases ii and iii), and inconsistent if is has no solutions (case i).

Two critical questions about any linear system are: (1) Does it have a solution? (existence), and (2) If it has a solution, is there only one? (uniqueness)

Matrices

Definition: A matrix is a rectangular array of numbers. It's size (a.k.a. dimension/order) is $m \times n$ (read " m by n ") where m is the number of rows and n is the number of columns the matrix has.

Examples:

$$
\begin{array}{cc}
{\left[\begin{array}{cccc}
2 & 0 & -1 & 3 \\
1 & 1 & 13 & -4 \\
12 & -3 & 2 & -2
\end{array}\right],} & {\left[\begin{array}{cc}
2 & 0 \\
4 & 4 \\
3 & -5
\end{array}\right]} \\
3 \times 4 & 3 \times 2
\end{array}
$$

Linear System: Coefficient Matrix

Given any linear system of equations, we can associate two matrices with the system. These are the coefficient matrix and the augmented matrix ${ }^{1}$.

Example: $\begin{array}{cc}x_{1}+2 x_{2}-x_{3}=-4 & \text { The coefficient } \\ 2 x_{1} & +x_{3}=7\end{array} \quad$ motrin holds the

$$
\begin{aligned}
& \text { eff side. } \\
& m=\# \text { equations } \\
& n=\# \text { varichles }
\end{aligned}
$$

${ }^{1}$ Note that like variables should be lined up vertically!

Linear System: Augmented Matrix

Given any linear system of equations, we can associate two matrices with the system. These are the coefficient matrix and the augmented matrix.

Legitimate Operations for Solving a System

We can perform three basic operation without changing the solution set of a system. These are

- swap the order of any two equations (swap),
- multiply an equation by any nonzero constant (scale), and
- replace an equation with the sum of itself and a nonzero multiple of any other equation (replace).

Some Operation Notation

Notation

- Swap equations i and j :

$$
E i \leftrightarrow E j
$$

- Scale equation i by k :

$$
k E i \rightarrow E i
$$

- Replace equation j with the sum of itself and k times equation i :

$$
k E i+E j \rightarrow E j
$$

Solve the following system of equations by elimination. Keep tabs on the augmented matrix at each step.

$$
\left.\left.\begin{array}{c}
x_{1}+2 x_{2}-x_{3}=-4 \\
2 x_{1} \\
x_{1}+x_{3}=7 \\
+x_{3}=6
\end{array}\right] \begin{array}{cccc}
1 & 2 & -1 & -4 \\
2 & 0 & 1 & 7 \\
1 & 1 & 1 & 6
\end{array}\right]
$$

then $-E Z \rightarrow E Z$

$$
\left.\begin{array}{rl}
x_{1}+2 x_{2}-x_{3} & =-4 \\
x_{2}-2 x_{3} & =-10 \\
-4 x_{2}+3 x_{3} & =15 \\
4 E 2+E 3 \rightarrow E 3 \\
x_{1}+2 x_{2}-x_{3} & =-4 \\
x_{2}-2 x_{3} & =-10 \\
-5 x_{3} & =-25 \\
-\frac{1}{5} E_{3} & \rightarrow E 3 \\
0 & 1 \\
0 & -4 \\
3 & -2
\end{array}\right]-10 \begin{array}{cccc}
1 & 2 & -1 & -4 \\
0 & & {\left[\begin{array}{llll}
1 & 2 & -1 & -4 \\
0 & 1 & -2 & -10 \\
0 & 0 & -5 & -25
\end{array}\right]} \\
x_{2}-2 x_{3} & =-10 \\
x_{3} & =5
\end{array} \quad\left[\begin{array}{llll}
1 & 2 & -1 & -4 \\
0 & 1 & -2 & -10 \\
0 & 0 & 1 & 5
\end{array}\right]
$$

From E3, $\quad x_{3}=5$
From E2, $\quad x_{2}=-10+2 x_{3}=-10+2(5)=0$
From EI, $\quad x_{1}=-4-2 x_{2}+x_{3}=-4-0+5=1$
we con express the solution as the triple $(1,0,5)$.

Elementary Row Operations

If any sequence of the following operations are performed on a matrix, the resulting matrix is row equivalent.
i Replace a row with the sum of itself and a multiple of another row (replacement).
ii Interchange any two rows (row swap).
iii Multiply a row by any nonzero constant (scaling).
Theorem: If the augmented matrices of two linear systems are row equivalent, then the systems have the same solution set. (i.e. The systems are equivalent!)

A key here is structure!
Consider the following augmented matrix. Determine if the associated system is consistent or inconsistent. If it is consistent, determine the solution set.
(a) $\left[\begin{array}{cccc}1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2\end{array}\right]$

$$
\begin{aligned}
x_{1} & =3 \\
x_{2} & =1 \\
x_{3} & =-2
\end{aligned}
$$

It is consistent with solution

$$
\begin{aligned}
& x_{1}=3 \\
& x_{2}=1 \\
& x_{3}=-2
\end{aligned}
$$

(b) $\left[\begin{array}{cccc}1 & 2 & 0 & 3 \\ 0 & 1 & -1 & 4 \\ 0 & 0 & 0 & 3\end{array}\right]$

$$
\begin{aligned}
x_{1}+2 x_{2} & =3 \\
x_{2}-x_{3} & =4 \\
0 & =3
\end{aligned}
$$

The third equation is always false.

The system is in consistent.
(c) $\left[\begin{array}{cccc}1 & 1 & -1 & 0 \\ 0 & 1 & 1 & 4 \\ 0 & 0 & 0 & 0\end{array}\right]$

$$
\begin{aligned}
& x_{1}+x_{2}-x_{3}=0 \\
& x_{2}+x_{3}=4 \\
& 0=0 \leqslant \text { always } \\
& \text { true }
\end{aligned}
$$

The system is consistent

$$
x_{1}=-x_{2}+x_{3} \quad x_{2}=4-x_{3}
$$

so $\quad x_{1}=-\left(4-x_{3}\right)+x_{3}=-4+2 x_{3}$
The solution set con be written as

$$
\begin{aligned}
& x_{1}=-4+2 x_{3} \\
& x_{2}=4-x_{3}
\end{aligned}
$$

x_{3} is free this con be writ h $x_{3} \in \mathbb{R}$

In this example, x_{3} is called free and x_{1} and x_{2} are called basic.

