August 15 Math 3260 sec. 58 Fall 2017

Section 1.1: Systems of Linear Equations

We begin with a linear (*algebraic*) equation in n variables $x_1, x_2, ..., x_n$ for some positive integer n.

A linear equation can be written in the form

$$a_1x_1+a_2x_2+\cdots+a_nx_n=b.$$

The numbers a_1, \ldots, a_n are called the *coefficients*. These numbers and the right side b are real (or complex) constants that are **known**.

> イロト 不得 トイヨト イヨト ヨー ろくの August 15, 2017

1/112

Examples of Equations that are or are not Linear

Polt proof
$$x_1 + 3x_3 = \frac{1}{x_2}$$
 and $xyz = \sqrt{w}$
non linear of Variables
product out of variables
linear ferm Square variables

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ Q ○

A *Linear System* is a collection of linear equations in the same variables

$$x + 2y + 3z = 4$$

$$3x + 12z = 0$$

$$2x + 2y - 5z = -6$$

August 15, 2017 3 / 112

<ロ> <四> <四> <四> <四> <四</p>

- ► A solution is a list of numbers (s₁, s₂,..., s_n) that reduce each equation in the system to a true statement upon substitution.
- A solutions set is the set of all possible solutions of a linear system.
- Two systems are called equivalent if they have the same solution set.

An Example

$$2x - y = -1$$

 $-4x + 2y = 2$

(a) Show that (1,3) is a solution.

$$x_{\pm 1}$$
 and $y_{\pm 3}$ in the pair $(1,3)$.

In equation
$$\bot$$
 setting $x=1$, $y=3$
 $2(1) - 3 = 2 - 3 = -1 \Rightarrow -1 = -1$ this frue

In equation 2

$$-4(1) + 2(3) = -4 + 6 = 2 \implies 2 = 2$$

Both equations are satisfied $\implies (1,3)$ is a solution.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

An Example Continued

$$2x - y = -1$$

 $-4x + 2y = 2$

(b) Note that $\{(x, y)|y = 2x + 1\}$ is the solution set.

From
$$2x - y = -1 \Rightarrow 2x = y - 1 \Rightarrow 2x + 1 = y$$

From $-4x + 2y = 2 \Rightarrow 2y = 2 + 4x$
 $2y = 2(1 + 2x)$
 $y = 1 + 2x$
The set condition is the some as each
equation in the system.

August 15, 2017 6 / 112

12

イロト イヨト イヨト イヨト

The Geometry of 2 Equations with 2 Variables

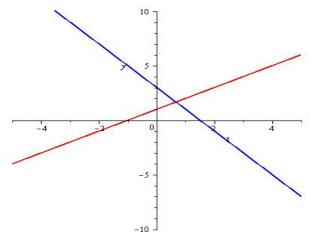


Figure: The system x - y = -1 and 2x + y = 3 with solution set $\{(2/3, 5/2)\}$. These equations represent lines that intersect at one point.

The Geometry of 2 Equations with 2 Variables

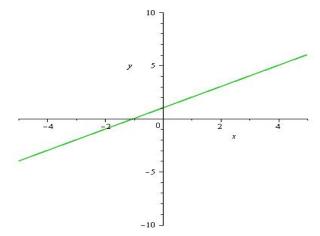


Figure: The system x - y = -1 and 2x - 2y = -2 with solution set $\{(x, y)|y = x + 1\}$. Both equations represent the same line which share all common points as solutions.

A D b 4 A b

The Geometry of 2 Equations with 2 Variables

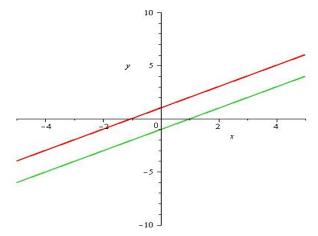


Figure: The system x - y = -1 and 2x - 2y = 2 with solution set \emptyset . These equations represent parallel lines having no common points.

Theorem

A linear system of equations has exactly one of the following:

- i No solution, or
- ii Exactly one solution, or
- iii Infinitely many solutions.

Terms: A system is

consistent if it has at least one solution (cases ii and iii), and **inconsistent** if is has no solutions (case i).

Two critical questions about any linear system are: (1) Does it have a solution? (existence), and (2) If it has a solution, is there only one? (uniqueness)

August 15, 2017

10/112

Matrices

Definition: A matrix is a rectangular array of numbers. It's **size** (a.k.a. dimension/order) is $m \times n$ (read "*m* by *n*") where *m* is the number of rows and *n* is the number of columns the matrix has.

Examples:

(日)

August 15, 2017

11/112

Linear System: Coefficient Matrix

Given any linear system of equations, we can associate two matrices with the system. These are the **coefficient** matrix and the **augmented** matrix¹.

¹Note that like variables should be lined up vertically!

Linear System: Augmented Matrix

Given any linear system of equations, we can associate two matrices with the system. These are the **coefficient** matrix and the **augmented** matrix.

is the coefficient motive with an extra Whan for the right side. M = # equations N = # variables + | $\begin{bmatrix} 1 & 2 & -1 & -4 \\ 2 & 0 & 1 & 7 \\ 1 & 1 & 1 & 6 \end{bmatrix}$

August 15, 2017 13 / 112

The augmented matrix

Legitimate Operations for Solving a System

We can perform three basic operation **without** changing the solution set of a system. These are

- swap the order of any two equations (swap),
- multiply an equation by any nonzero constant (scale), and
- replace an equation with the sum of itself and a nonzero multiple of any other equation (replace).

August 15, 2017 14 / 112

Some Operation Notation

Notation

Swap equations *i* and *j*:

$$Ei \leftrightarrow Ej$$

Scale equation i by k:

kEi
ightarrow Ei

Replace equation j with the sum of itself and k times equation i:

 $\textit{kEi} + \textit{Ej} \rightarrow \textit{Ej}$

August 15, 2017 15 / 112

-

イロト 不得 トイヨト イヨト

Solve the following system of equations by *elimination*. Keep tabs on the augmented matrix at each step.

than -Ez -> EZ

August 15, 2017 16 / 112

<ロト <回 > < 回 > < 回 > < 回 > … 回

$$\begin{bmatrix} 1 & 2 & -1 & -4 \\ 0 & 1 & -2 & -10 \\ 0 & -4 & 3 & 15 \end{bmatrix}$$

$$x_1 + 2x_2 - x_3 = -4$$

 $x_2 - 2x_3 = -10$
 $-4x_2 + 3x_3 = 15$

$$4E2+E3 \rightarrow E3$$

X₁ + 2X₂ - X₃ = -4
X₂ - 2X₃ = -10
-5X₃ = -25

$$\begin{bmatrix} 1 & 2 & -1 & -4 \\ 0 & 1 & -2 & -10 \\ 0 & 0 & -5 & -25 \end{bmatrix}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○

August 15, 2017 17 / 112

 $\frac{1}{5}E_3 \rightarrow E3$

$$\begin{array}{c} X_{1} + 2X_{2} - X_{3} = -4 \\ X_{2} - 2X_{3} = -10 \\ X_{3} = 5 \end{array} \begin{bmatrix} 1 & 2 & -1 & -4 \\ 0 & 1 & -2 & -10 \\ 0 & 0 & 1 & s \end{bmatrix}$$

From E2 X2 = -10+2X3 but X3=5

From EI $X_1 = -4 - 2X_2 + X_3 = -4 - 0 + 5 = 1$

August 15, 2017 18 / 112

Elementary Row Operations

If any sequence of the following operations are performed on a matrix, the resulting matrix is row equivalent.

- i Replace a row with the sum of itself and a multiple of another row (replacement).
- ii Interchange any two rows (row swap).
- iii Multiply a row by any nonzero constant (scaling).

Theorem: If the augmented matrices of two linear systems are row equivalent, then the systems have the same solution set. (i.e. The systems are equivalent!)

> イロト 不得 トイヨト イヨト ヨー ろくの August 15, 2017

22/112

A key here is structure!

Consider the following augmented matrix. Determine if the associated system is consistent or inconsistent. If it is consistent, determine the solution set.

(a)
$$\begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$

This is consistent with solution $X_1 = 3$
 $X_2 = 1$
 $X_3 = -2$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

(c)
$$\begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 1 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{array}{c} X_1 + X_2 - X_3 = 0 \\ X_2 + X_3 = 4 \\ 0 = 0 \end{array}$$

From E1
$$X_1 = -X_2 + X_3 = -(4 - X_3) + X_3 = -4 + 2X_3$$

We can express this as
 $X_1 = -4 + 2X_3$
 $X_2 = 4 - X_3$
 X_3 is free This could be $X_3 \in \mathbb{R}$

・ロト・西ト・ヨト・ヨー うへの

Here X, and X2 ore colled basic Variables.