August 17 Math 2306 sec. 53 Fall 2018

Section 1: Concepts and Terminology

We consider an $n^{\text {th }}$ order ODE $F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0\left(^{*}\right)$
Definition: A function ϕ defined on an interval ${ }^{1} I$ and possessing at least n continuous derivatives on I is a solution of $\left(^{*}\right)$ on I if upon substitution (i.e. setting $y=\phi(x)$) the equation reduces to an identity.

Definition: An implicit solution of $\left(^{*}\right)$ is a relation $G(x, y)=0$ provided there exists at least one function $y=\phi$ that satisfies both the differential equation (*) and this relation.
${ }^{1}$ The interval is called the domain of the solution or the interval of definition.

Function vs Solution

The interval of defintion has to be an interval.

Example: Consider the ODE $\quad y^{\prime}=-y^{2}$. A solution is $y=\frac{1}{x}$.
The interval of defintion can be

$$
(-\infty, 0) \text { or }(0, \infty)
$$

or any interval that doesn't contain the origin.
But it CAN't be $(-\infty, 0) \cup(0, \infty)$ because this isn't an interval!
Depending on other available information, we often assume $/$ is the largest (or one of the largest) possible intervals.

Function vs Solution

The graph of an ODE solution ${ }^{2}$ will not have disconnected pieces.

Figure: Left: Plot of $f(x)=\frac{1}{x}$ as a function. Right: Plot of $f(x)=\frac{1}{x}$ as a possible solution of an ODE.
${ }^{2}$ This is known as a classical solution.

Unspecified Constants in a Function
Show that for any choice of constants c_{1} and $c_{2}, y=c_{1} x+\frac{c_{2}}{x}$ is a solution of the differential equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}-y=0
$$

we ll substitute:

$$
\begin{aligned}
& y=c_{1} x+c_{2} x^{-1} \\
& y^{\prime}=c_{1}-c_{2} x^{-2} \\
& y^{\prime \prime}=0+2 c_{2} x^{-3}
\end{aligned}
$$

$$
\begin{aligned}
x^{2} y^{\prime \prime}+x y^{\prime}-y & =x^{2}\left(2 c_{2} x^{-3}\right)+x\left(c_{1}-c_{2} x^{-2}\right)-\left(c_{1} x+c_{2} x^{-1}\right) \\
& =2 c_{2} x^{-1}+c_{1} x-c_{2} x^{-1}-c_{1} x-c_{2} x^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& =x^{-1}\left(2 c_{2}-c_{2}-c_{2}\right)+x\left(c_{1}-c_{1}\right) \\
& =0 \cdot x^{-1}+0 x=0 \text { as expected) }
\end{aligned}
$$

So for any numbers c_{1}, c_{2} $y=c_{1} x+\frac{c_{2}}{x}$ solves the $d D \overline{\bar{\tau}}$.

Some Terms

- A parameter is an unspecified constant such as c_{1} and c_{2} in the last example.
- A family of solutions is a collection of solution functions that only differ by a parameter.
- An n-parameter family of solutions is one containing n parameters (e.g. $c_{1} x+\frac{c_{2}}{x}$ is a 2 parameter family).
- A particular solution is one with no arbitrary constants in it.
- The trivial solution is the simple constant function $y=0$.
- An integral curve is the graph of one solution (perhaps from a family).

Section 2: Initial Value Problems

IVP

An initial value problem consists of an ODE with a certain type of additional conditions.

Solve the equation ${ }^{3}$

$$
\begin{equation*}
\frac{d^{n} y}{d x^{n}}=f\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right) \tag{1}
\end{equation*}
$$

subject to the initial conditions

$$
\begin{equation*}
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}, \quad \ldots, y^{(n-1)}\left(x_{0}\right)=y_{n-1} \tag{2}
\end{equation*}
$$

The problem (1)-(2) is called an initial value problem (IVP).

[^0]IVPs
First order case:

$$
\begin{aligned}
& \frac{d y}{d x}=f(x, y), \quad y\left(x_{0}\right)=y_{0} \\
& \text { Yore cold }
\end{aligned}
$$

$k\left(x_{0}, y_{0}\right)$ y

Second order case:
 two coitions

$$
\frac{d^{2} y}{d x^{2}}=f\left(x, y, y^{\prime}\right), \quad y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}
$$

If y is the position of a particle e time x $y^{\prime \prime}$ is the acceleration y_{0}-initio position, y_{1}-initial velocity

Example
Given that $y=c_{1} x+\frac{c_{2}}{x}$ is a 2-parameter family of solutions of $x^{2} y^{\prime \prime}+x y^{\prime}-y=0$, solve the IVP

$$
x^{2} y^{\prime \prime}+x y^{\prime}-y=0, \quad y(1)=1, \quad y^{\prime}(1)=3
$$

The solutions to the ODE look li.he $y=c_{1} x+\frac{c_{2}}{x}$. We need to figure out C_{1}, C_{2} values that satisfy the initial conditions (IC).

Impose $y(1)=1$ and $y^{\prime}(1)=3$

$$
y(1)=c_{1}(1)+\frac{c_{2}}{1}=1 \Rightarrow c_{1}+c_{2}=1
$$

(from before

$$
\left.y^{\prime}=c_{1}-c_{2} x^{-2}\right) \quad y^{\prime}(1)=c_{1}-c_{2}(1)^{-2}=3 \Rightarrow \underbrace{c_{1}}_{\text {we } \text { solve }^{c_{1}}-c_{2}}=3
$$

we solve this system
add equs: $2 C_{1}=4$

$$
c_{1}=2
$$

from equation 1: $\quad 2+c_{2}=1 \Rightarrow c_{2}=1-2=-1$
The solution to the IVP is

$$
y=2 x-\frac{1}{x}
$$

[^0]: ${ }^{3}$ on some interval / containing x_{0}.

